Matematikundervisning på universitetet
whiteboards, tilfældige grupper og problemløsningsopgaver
DOI:
https://doi.org/10.7146/dut.v20i37.143339Resumé
Universitetets matematikundervisning er typisk struktureret omkring forelæsninger med envejskommunikation, efterfulgt af instruktortimer, hvor studerende engagerer sig i opgaveløsning. Dette studie præsenterer en undersøgelse, hvor en underviser på to forskellige matematikhold inden for ingeniøruddannelsen har lavet undersøgelser med ny undervisningspraksis beskrevet som ”Det tænkende klasserum” udviklet af Peter Liljedahl. Denne praksis involverer bl.a. indledning af undervisningen med åbne problemløsningsopgaver, anvendelse af tilfældigt sammensatte trepersonersgrupper i undervisningen og brugen af lodrette, ikke-permanente tavleflader under gruppearbejdet.
Gennem semesteret er der systematisk indsamlet data i form af undervisningsobservationer, evalueringssurveys og instruktorinterviews. Artiklens resultater belyser forskellige potentielle fordele ved denne tilgang, men identificerer også enkelte udfordringer. Dette bidrager til en dybere forståelse af dynamikken, der opstår ved implementeringen af disse nye undervisningsmetoder og deres indvirkning på både undervisningsprocessen og de studerendes sociale tilhørsforhold samt læring af matematik på universitetet.
Referencer
Andreassen, H. (1999). Begrundelser for matematikundervisningen i den lærde skole hhv. gymnasiet (Doctoral dissertation, Roskilde Universitetscenter, Institut for Studiet af Matematik og Fysik
Bayer, M., Plauborg, H., & Andersen, J. (2007). Aktionslæring: Læring i og af praksis. Hans Reitzels Forlag.
Bergmann, J., & Sams, A. (2012). Flip your classroom: Reach every student in every class every day. International society for technology in education.
Burdman, P., Baker, M., & Henderson, F. (2021). Charting a new course: Investigating barriers on the calculus pathway to STEM. Just Equations. justequations. org/resource/charting-a-new-course-investigating-barriers-on-the-calculuspathway-to-stem.
Duch, H. (Ed.) (2023). Gruppearbejde på ungdoms- og videregående uddannelser. Frydenlund.
Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K., Wearne, D., Murray, H., Oliver, A., & Human, P. (1997). Making sense: Teaching and learning mathematics with understanding. Portsmouth: Heinemann.
Ivankova, N. V. (2015). Mixed methods applications in action research. Sage
Kutnick, P., & Blatchford, P. (2014). Effective group work in primary school classrooms. Dordrecht: Springer Science & Business Media. https://doi.org/10.1007/978-94-007-6991-5
Lauridsen, E., & Dohn, N. B. (2017). Implicitte forudsætninger i gruppearbejde. Dansk Pædagogisk Tidsskrift, (1), 80-89.
Laursen, S., Andrews, T., Stains, M., Finelli, C. J., Borrego, M., McConnell, D., Johnson, E., Foote, K., Ruedi, B., & Malcom, S. (2019). Levers for change: An assessment of progress on changing STEM instruction. Washington, DC: American Association for the Advancement of Science. https://www.aaas.org/resources/levers-change-assessment-progress-changing-stem-instruction
LeSage, A., Friedlan, J., Tepylo, D., & Kay, R. (2021). Supporting at-Risk University Business Mathematics Students: Shifting the Focus to Pedagogy. International Electronic Journal of Mathematics Education, 16(2), em0635. https://doi.org/10.29333/iejme/10893
Leyva, L. A., Quea, R., Weber, K., Battey, D., & López, D. (2020). Detailing Racialized and Gendered Mechanisms of Undergraduate Precalculus and Calculus Classroom Instruction. Cognition and Instruction, 39(1), 1-34. https://doi.org/10.1080/07370008.2020.1849218
Liljedahl, P. (2014). The affordances of using visually random groups in a mathematics classroom. In Y. Li, E. Silver, & S. Li (eds.) Transforming Mathematics Instruction: Multiple Approaches and Practices. New York, NY: Springer. https://doi.org/10.1007/978-3-319-04993-9_8
Liljedahl, P. (2016). Building Thinking Classrooms: Conditions for Problem-Solving. In: Felmer, P., Pehkonen, E., Kilpatrick, J. (eds) Posing and Solving Mathematical Problems. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-319-28023-3_21
Liljedahl, P. (2019). Conditions for Supporting Problem Solving: Vertical Non-permanent Surfaces. In: Liljedahl, P., Santos-Trigo, M. (eds) Mathematical Problem Solving. ICME-13 Monographs. Springer, Cham. https://doi.org/10.1007/978-3-030-10472-6_13
Liljedahl, P. (2020). Building thinking classrooms in mathematics, grades K-12: 14 teaching practices for enhancing learning. Corwin press.
Papert, S. (1980). Computers for children. Mindstorms: Children, computers, and powerful ideas, Basic Books, Inc Publishers.
Pruner, M., & Liljedahl, P. (2021). Collaborative problem solving in a choice-affluent environment. ZDM-Mathematics Education, 53, 753-770. https://doi.org/10.1007/s11858-021-01232-7
Reimer, D., & Andersen, I. G. (2022). Frafald fra de videregående uddannelser: Forklaringer, mekanismer og løsninger. Aalborg Universitetsforlag.
Schindler, M., & Bakker, A. (2020). Affective field during collaborative problem posing and problem solving: A case study. Educational Studies in Mathematics, 105(3), 303-324. https://doi.org/10.1007/s10649-020-09973-0
Schoenfeld, A. H. (2016). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics (Reprint). Journal of education, 196(2), 1-38. https://doi.org/10.1177/002205741619600202
Sfard, A. (2008). Thinking as communicating. Human development, the growth of discourses, and mathematizing. Cambridge University Press. https://doi.org/10.1017/CBO9780511499944
Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching, 77, 20-26.
Stains, M., Harshman, J., Barker, M. K., Chasteen, S. V., Cole, R., DeChenne-Peters, S. E., ... & Young, A. M. (2018). Anatomy of STEM teaching in North American universities. Science, 359 (6383), 1468-1470. https://doi.org/10.1126/science.aap8892
Stein, M. K., & Lane, S. (1996). Instructional tasks and the development of student capacity to think and reason: An analysis of the relationship between teaching and learning in a reform mathematics project. Educational Research and Evaluation, 2(1), 50-80. https://doi.org/10.1080/1380361960020103
Syddansk Universitet (2023). Bærende principper for undervisning, https://www.sdu.dk/da/om_sdu/institutter_centre/c_unipaedagogik/baerende_principper
Yackel, E., & Rasmussen, C. (2002). Beliefs and norms in the mathematics classroom. In G.C. Leder, E Pehkonen, & G. Törner, Beliefs (Eds): A hidden variable in mathematics education? (pp. 313-330). Dordrecht: Springer Netherlands. https://doi.org/10.1007/0-306-47958-3_18
Downloads
Publiceret
Citation/Eksport
Nummer
Sektion
Licens
DUT udkommer elektronisk via Statsbibliotekets Open Journal System (Tidsskrift.dk) og DUNs hjemmeside (DUN-net.dk) forår og efterår. Det er gratis og frit tilgængeligt at læse og downloade artikler fra tidsskriftet.
Det er ikke muligt at abonnere på Dansk Universitetspædagogisk Tidsskrift, DUT, men hvis du er medlem af DUN, får du tilsendt en nyhedsmail med link til udgivelsen, når den nyeste udgave er online. Linket vil også være tilgængeligt her på siden, så snart tidsskriftet er publiceret.
© Copyright
Artikler publiseret i Dansk Universitetspædagogisk Tidsskrift, DUT, må bruges (downloades) og genbruges (distribueres, kopieres, citeres) til ikke-kommercielle formål med reference til forfattere og Dansk Universitetspædagogisk Tidsskrift.
Artikler indsendt til Dansk Universitetspædagogisk Tidsskrift må ikke publiseres i andre tidskrifter.
Betingelser
Artikler i Dansk Universitetspædagogisk Tidsskrift, DUT, er omfattet af ophavsretsloven, og der må citeres fra dem.
Følgende betingelser skal dog være opfyldt:
- Citatet skal være i overensstemmelse med „god skik“
- Der må kun citeres „i det omfang, som betinges af formålet“
- Ophavsmanden til teksten skal krediteres, og kilden skal angives ift. ovenstående bibliografiske oplysninger.