Regnestrategier og de udfordrede elever i matematik – eksempel fra 6. klasse
PDF

Citation/Eksport

Jóelsdóttir, L. B., & Sunde, P. (2024). Regnestrategier og de udfordrede elever i matematik – eksempel fra 6. klasse. MONA - Matematik- Og Naturfagsdidaktik, 24(Særnummer), 13. Hentet fra https://tidsskrift.dk/mona/article/view/150688

Resumé

Dette studie undersøger lavt præsterende elevers strategier for regning med flercifrede tal sammenlignet med højere præsterende elever. Lavt præsterende elever defineres som de elever, der er blandt de 35 % lavest scorende i nationale tests i matematik. Data om 685 danske 6.-klasseelevers brug af talbaserede strategier og standardalgoritmer i flercifret addition, subtraktion og multiplikation blev sammenlignet mellem de fem præstationsgrupper i nationale tests. Resultaterne viste en stigende brug af talbaserede strategier for hvert præstationsniveau, men ingen signifikante forskelle mellem præstationsgrupper i brug af standardalgoritme. Talbaserede strategier resulterede oftere i korrekt resultat end standardalgoritmen for alle præstationsgrupper undtagen de 10 % lavest scorende.

PDF

Referencer

Aunio, P. & Niemivirta, M. (2010). Predicting Children’s Mathematical Performance in Grade One by Early Numeracy. Learning and Individual Differences, 20(5), 427‑435. https://doi.org/10.1016/j.lindif.2010.06.003

Børne- og Undervisningsministeriet. (2017). Vejledning om de nationale tests – til skoleledere.Børne- og Undervisningsministeriet.

Børne- og Undervisningsministeriet. (2019). Matematik – læseplan. https://emu.dk/sites/default/ files/2020‑09/GSK_L%C3%A6seplan_Matematik.pdf

Børne- og Undervisningsministeriet. (u.å) Testresultater. Lokaliseret 21/6‑2024 fra https://uddannelsesstatistik. dk/Pages/Topics/17.aspx?excel=1579

Geary, D. C., Hamson, C. O. & Hoard, M. K. (2000). Numerical and Arithmetical Cognition: A Longitudinal Study of Process and Concept Deficits in Children With Learning Disability. Journal of Experimental Child Psychology, 77(3), 236‑263. https://doi.org/10.1006/jecp.2000.2561

Hickendorff, M. (2018). Dutch Sixth Graders’ Use of Shortcut Strategies in Solving Multidigit Arithmetic Problems. European Journal of Psychology of Education, 33(4), 577‑594. https://doi.org/10.1007/s10212‑017‑0357‑6

Hickendorff, M., Torbeyns, J. & Verschaffel, L. (2019). Multi-Digit Addition, Subtraction, Multiplication, and Division Strategies. I A. Fritz, V. G. Haase & P. Räsänen (red.), International Handbook of Mathematical Learning Difficulties (s. 543‑560). Springer. https://doi.org/10.1007/978‑3‑319‑97148‑3_32

Jóelsdóttir, L. B. (2023). Essays on Adaptivity and Flexibility in Multidigit Arithmetic. Ph.d.-afhandling. Institut for Økonomi, Aarhus Universitet.

Jóelsdóttir, L. B. & Andrews, P. (2023). Danish Third, Sixth and Eighth Grade Students’ Strategy Adaptivity, Strategy Flexibility and Accuracy When Solving Multidigit Arithmetic Tasks. European Journal of Psychology of Education. https://doi.org/10.1007/s10212‑023‑00786‑2

Jóelsdóttir, L. B. & Andrews, P. (2024). Grade Six Students’ Multi-Digit Arithmetic Strategy Adaptivity and Flexibility: Evaluating a Novel Tri-Phase Assessment Tool. International Journal of Mathematical Education in Science and Technology. https://doi.org/10.1080/002 0739X.2024.2328341

Jóelsdóttir, L. B. & Sunde, P. (2024). Adaptivitet og fleksibilitet – addition og subtraktion med flercifrede tal. [Manuskript accepteret til udgivelse i MONA].

MacDonald, B., Westenskow, A., Moyer-Packenham, P. S. & Child, B. (2018). Components of Place Value Understanding: Targeting Mathematical Difficulties When Providing Interventions. School Science and Mathematics, 118(1/2), 17‑29. https://doi.org/10.1111/ssm.12258

McMullen, J., Brezovszky, B., Rodríguez-Aflecht, G., Pongsakdi, N., Hannula-Sormunen, M. M. & Lehtinen, E. (2016). Adaptive Number Knowledge: Exploring the Foundations of Adaptivity With Whole-Number Arithmetic. Learning and Individual Differences, 47, 172‑181. https://doi.org/10.1016/j.lindif.2016.02.007

Ostad, S. (1999). Developmental Progression of Subtraction Strategies: A Comparison of Mathematically Normal and Mathematically Disabled Children. European Journal of Special Needs Education, 14(1), 21‑36. https://doi.org/10.1080/0885625990140103

Peltenburg, M., van den Heuvel-Panhuizen, M. & Robitzsch, A. (2012). Special Education Students’ Use of Indirect Addition in Solving Subtraction Problems up to 100: A Proof of the Didactical Potential of an Ignored Procedure. Educational Studies in Mathematics, 79, 351‑369. https://doi.org/10.1007/s10649‑011‑9351‑0

Rittle-Johnson, B. & Schneider, M. (2015). Developing Conceptual and Procedural Knowledge of Mathematics. I R. C. Kadosh & A. Dowker (red.), The Oxford Handbook of Numerical Cognition (s. 1118‑1134). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199642342.013.014

Rittle-Johnson, B., Star, J. R. & Durkin, K. (2012). Developing Procedural Flexibility: Are Novices Prepared to Learn From Comparing Procedures? British Journal of Educational Psychology, 82(3), 436‑455. https://doi.org/10.1111/j.2044‑8279.2011.02037.x

Sunde, P. B., De Smedt, B., Verschaffel, L. & Sunde, P. (2023). Grade One Single-Digit Addition Strategies as Predictors of Grade Four Achievement in Mathematics. European Journal of Psychology of Education. https://doi.org/10.1007/s10212‑023‑00761-x

Torbeyns, J., Peters, G., De Smedt, B., Ghesquière, P. & Verschaffel, L. (2018). Subtraction by Addition Strategy Use in Children of Varying Mathematical Achievement Level: A Choice/No-Choice Study. Journal of Numerical Cognition, 4(1), 215‑234. https://doi.org/10.5964/jnc.v4i1.77

Undervisningsministeriet. (2001). Klare mål – matematik – faghæfte 12. Undervisningsministeriet.

Van Der Auwera, S., Torbeyns, J., De Smedt, B., Verguts, G. & Verschaffel, L. (2022). The Remarkably Frequent, Efficient, and Adaptive Use of the Subtraction by Addition Strategy: A Choice/No-Choice Study in Fourth- to Sixth-Graders With Varying Mathematical Achievement Levels. Learning and Individual Differences, 93, 102107. https://doi.org/10.1016/j.lindif.2021.102107

Verschaffel, L., Luwel, K., Torbeyns, J. & Van Dooren, W. (2009). Conceptualizing, Investigating, and Enhancing Adaptive Expertise in Elementary Mathematics Education. European Journal of Psychology of Education, 14(3), 335‑359. https://doi.org/10.1007/BF03174765

Verschaffel, L., Torbeyns, J., De Smedt, B., Luwel, K. & Van Dooren, W. (2007). Strategy Flexibility in Children With low Achievement in Mathematics. Educational & Child Psychology, 24(2), 16‑27.

Xu, L., Liu, R. D., Star, J. R., Wang, J., Liu, Y. & Zhen, R. (2017). Measures of Potential Flexibility and Practical Flexibility in Equation Solving. Frontiers in Psychology, 8, 1368. https://doi.org/10.3389/fpsyg.2017.01368

Yackel, E. & Cobb, P. (1992). Sociomathematical Norms, Argumentation, and Autonomy in Mathematics. Journal for Research in Mathematics Education, 27(4), 458‑477. https://doi. org/10.5951/jresematheduc.27.4.0458