Resumé
Internationalt er der enighed om at fleksibilitet og adaptivitet, dvs. at kende til flere strategier og at kunne vælge den mest hensigtsmæssige, er centrale elementer i matematikundervisning. Vi har undersøgt 2.298 danske 3.-, 6.- og 8.-klasseelevers brug af regnestrategier til trecifrede additions- og subtraktionsopgaver designet til at fremme brug af talbaserede metoder, fx 199 + 323. På tværs af klassetrin viste eleverne lav grad af adaptivitet. Eleverne anvendte sjældent de talbaserede metoder selvom disse havde højere rigtighedsprocent end standardalgoritmen. Brug af standardalgoritmen var størst i 8. klasse hvor eleverne samtidig gjorde mindst brug af talbaserede metoder.
Referencer
Baroody, A.J. (2003). The Development of Adaptive Expertise and Flexibility: The Integration of Conceptual and Procedural Knowledge. I: A.J. Baroody & A. Dowker (red.), The Development of Arithmetic Concepts and Skills: Constructing Adaptive Expertise (s. 1‑33). Lawrence Erlbaum Associates Publishers.
Børne- og Undervisningsministeriet. (2019a). Matematik – faghæfte 2019. https://emu.dk/sites/ default/files/2020-09/GSK_Fagh%C3%A6fte_Matematik.pdf
Børne- og Undervisningsministeriet. (2019b). Vejledning til folkeskolens prøver i faget matematik – 9. klasse.
Cobb, P. & Yackel, E. (1996). Constructivist, Emergent, and Sociocultural Perspectives in the Context of Developmental Research. Educational Psychologist, 31(3), 175‑190. https://doi.org /10.1080/00461520.1996.9653265
Dowker, A. (2014). Young Children’s Use of Derived Fact Strategies for Addition and Subtraction. Frontiers in Human Neuroscience, 7, 1‑9. https://doi.org/10.3389/fnhum.2013.00924
Hansen, H.C. (2011). Moderne matematiske færdigheder fra skolestart til studiestart – et udredningsarbejde finansieret af Undervisningsministeriet 2010‑2011. https://www.ucviden.dk/ files/121875011/Udredning_fra_f_rdighedsudvalget_for_matematik.pdf
Hatano, G. (1988). Social and Motivational Bases for Mathematical Understanding. New Directions for Child Development, 41, 55‑70. https://doi.org/10.1002/cd.23219884105
Hatano, G. & Inagaki, K. (1984). Two Courses of Expertise. Research & Clinical Center for Child Development, 82‑83(Ann Rpt), 27‑36.
Hickendorff, M. (2018). Dutch Sixth Graders’ Use of Shortcut-Strategies in Solving Multidigit Arithmetic Problems. European Journal of Psychology of Education, 33(4), 577‑594. https://doi.org/10.1007/s10212‑017‑0357‑6
Hickendorff, M., Torbeyns, J. & Verschaffel, L. (2018). Grade-Related Differences in Strategy Use in Multidigit Division in Two Instructional Settings. British Journal of Developmental Psychology, 36(2), 169‑187. https://doi.org/10.1111/bjdp.12223
Hickendorff, M., Torbeyns, J. & Verschaffel, L. (2019). Multi-Digit Addition, Subtraction, Multiplication, and Division Strategies. I: A. Fritz, V.G. Haase & P. Räsänen (red.), International Handbook of Mathematical Learning Difficulties (s. 543‑560). Springer. https://doi.org/10.1007/978‑3‑319‑97148‑3_32
Jóelsdóttir, L.B. (2023). Essays on Adaptivity and Flexibility in Multidigit Arithmetic. Aarhus Universitet. https://pure.au.dk/portal/da/publications/essays-on-adaptivity-and-flexibilityin-multidigit-arithmetic(441b0429-68a7-45e1-ab6f-04dbddacefb6).html
Jóelsdóttir, L.B. & Andrews, P. (2023). Danish Third, Sixth and Eighth Grade Students’ Strategy Adaptivity, Strategy Flexibility and Accuracy when Solving Multidigit Arithmetic Tasks. European Journal of Psychology of Education. https://doi.org/10.1007/s10212‑023‑00786‑2
Jóelsdóttir, L.B., Sunde, P.B. & Andrews, P. (2023). Age- and Gender-Related Differences in Danish Students’ Use of Number-Based Strategies when Solving Multidigit Addition Tasks. I: P. Drijvers, C. Csapodi, H. Palmér, K. Gosztonyi & E. Kónya (red.), Proceedings of the Thirteenth Congress of the European Society for Research in Mathematics Education (s. 433‑440). European Society for Research in Mathematics Education.
Ostad, S. (1997). Developmental Differences in Addition Strategies: A Comparison of Mathematically Disabled and Mathematically Normal Children. British Journal of Educational Psychology, 67(3), 345‑357. https://doi.org/10.1111/j.2044‑8279.1997.tb01249.x
Rittle-Johnson, B., Star, J.R. & Durkin, K. (2012). Developing Procedural Flexibility: Are Novices Prepared to Learn from Comparing Procedures? British Journal of Educational Psychology, 82(3), 436‑455. https://doi.org/10.1111/j.2044‑8279.2011.02037.x
Selter, C. (2001). Addition and Subtraction of Three-Digit Numbers: German Elementary Children’s Success, Methods and Strategies. Educational Studies in Mathematics, 47(2), 145‑173. https://www.jstor.org/stable/3483326
Siegler, R.S. & Jenkins, E. (1989). How Children Discover New Strategies. Lawrence Erlbaum Associates, Inc.
Sunde, P.B. (2022). Adaptivitet og fleksibilitet – regnestrategier i de yngste klasser. MONA, 2022(2), 7‑23. https://tidsskrift.dk/mona/article/view/132755
Sunde, P.B., De Smedt, B., Verschaffel, L. & Sunde, P. (2023). Grade One Single-Digit Addition Strategies as Predictors of Grade Four Achievement in Mathematics. European Journal of Psychology of Education. https://doi.org/10.1007/s10212‑023‑00761-x
Threlfall, J. (2002). Flexible Mental Calculation. Educational Studies in Mathematics, 50, 29‑47. https://doi.org/10.1023/A:1020572803437
Torbeyns, J., De Smedt, B., Ghesquière, P. & Verschaffel, L. (2009). Acquisition and Use of Shortcut-Strategies by Traditionally Schooled Children. Educational Studies in Mathematics, 71(1), 1‑17. https://doi.org/10.1007/s10649‑008‑9155-z
Torbeyns, J., Peters, G., De Smedt, B., Ghesquière, P. & Verschaffel, L. (2018). Subtraction by Addition Strategy Use in Children of Varying Mathematical Achievement Level: A Choice/No-Choice Study. Journal of Numerical Cognition, 4(1), 215‑234. https://doi.org/10.5964/jnc.v4i1.77
Undervisningsministeriet. (2001). Klare mål – matematik – faghæfte 12.
Vanbinst, K., Ghesquière, P. & De Smedt, B. (2014). Arithmetic Strategy Development and Its Domain-Specific and Domain-General Cognitive Correlates: A Longitudinal Study in Children with Persistent Mathematical Learning Difficulties. Research in Developmental Disabilities, 35(11), 3001‑3013. https://doi.org/10.1016/j.ridd.2014.06.023
Verschaffel, L. (2023). Strategy Flexibility in Mathematics. ZDM – Mathematics Education, 56, 115‑126. https://doi.org/10.1007/s11858‑023‑01491‑6
Verschaffel, L., Torbeyns, J., De Smedt, B., Luwel, K. & Van Dooren, W. (2007). Strategy Flexibility in Children with Low Achievement in Mathematics. Educational and Child Psychology, 24(2), 16‑27. https://doi.org/10.53841/bpsecp.2007.24.2.16
Verschaffel, L., Luwel, K., Torbeyns, J., & Van Dooren, W. (2009). Conceptualizing, investigating, and enhancing adaptive expertise in elementary mathematics education. European Journal of Psychology of Education, 24(3), 335‑359. https://doi.org/10.1007/BF03174765
Xu, L., Liu, R.D., Star, J.R., Wang, J., Liu, Y. & Zhen, R. (2017). Measures of Potential Flexibility and Practical Flexibility in Equation Solving. Frontiers in Psychology, 8, 1368. https://doi.org/10.3389/fpsyg.2017.01368
Yang, D.-C., Reyes, R.E. & Reyes, B.J. (2009). Number Sense Strategies Used by Pre-Service Teachers in Taiwan. International Journal of Science and Mathematics Education, 7, 383-403. https://doi.org/10.1007/s10763-007-9124-5