Inspiring and/or scary?
Emotional tensions in student responses to formative feedback from chatbots at a master’s level course in counseling
DOI:
https://doi.org/10.7146/lom.v18i31.149114Keywords:
GAI, learning, higher education, formative feedback, counseling educationAbstract
This study contributes to an emerging field of research on generative artificial intelligence (GAI) and feedback in higher education by examining how master's students attending a course in counseling respond to chatbots as a “relevant other” (Carless & Young, 2024) in formative feedback practices. Using a Bakhtinian (1981) dialogic framework and a longitudinal mixed-methods approach, we show three distinct student responses to chatbot voices: positive, skeptical, and struck. Our findings reveal students' emotional ambivalence and the tensions between trust/distrust and acceptance/rejection of chatbot voices. These tensions give rise to different understandings of what it means to be critical in an academic context, along with ambivalence between expecting “the right answers” from chatbots and engaging in a dialogical learning process. We argue that acknowledging these emotional tensions is crucial in realizing GAI's learning potential (Maurya & DeDiego, 2023) in both academic work and future counseling practice.
Downloads
References
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101. https://doi.org/10.1191/1478088706qp063oa
Braun, V., & Clarke, V. (2019). Reflecting on reflexive thematic analysis. Qualitative research in sport, exercise and health, 11(4), 589-597. https://doi.org/10.1080/2159676X.2019.1628806
Braun, V., & Clarke, V. (2021). One size fits all? What counts as quality practice in (reflexive) thematic analysis? Qualitative Research in Psychology, 18(3), 328-352. https://doi.org/10.1080/14780887.2020.1769238
Bruun, M. H., Krause-Jensen, J., & Hasse, C. (2024). Store sprogmodeller og AI-chatbots på videregående uddannelser. Pædagogisk Indblik, 26. https://unipress.dk/media/21032/26_store_sprogmodeller_og_ai-chatbots_paa_videregaaende_uddannelser_-11-12-2024.pdf
Carless, D., & Young, S. (2024). Feedback seeking and student reflective feedback literacy: a sociocultural discourse analysis. Higher Education, 88, 857–873. https://doi.org/https://doi.org/10.1007/s10734-023-01146-1
Charmaz, K. (2014). Constructing grounded theory. Sage.
Clark, D. (2024). Artificial Intelligence for Learning: Using AI and Generative AI to Support Learner Development. Kogan Page Publishers
Cunliffe, A. L. (2004). On becoming a critically reflexive practitioner. Journal of Management Education, 28(4), 407-426. https://doi.org/https://doi-org.ez.statsbiblioteket.dk/10.1177/1052562904264
de Kleijn, R. A. M. (2023). Supporting student and teacher feedback literacy: an instructional model for student feedback processes. Assessment & Evaluation in Higher Education, 48(2), 186-200.
Escalante, J., Pack, A., & Barrett, A. (2023). AI-generated feedback on writing: insights into efficacy and ENL student preference. International Journal of Educational Technology in Higher Education, 20(1), 57. https://doi.org/10.1186/s41239-023-00425-2
Frank, A. (2005). What is dialogical research and why should we do it? Qualitative Health Re-search, 15(7), 964–974. https://journals-sagepub-com.ez.statsbiblioteket.dk/doi/epdf/10.1177/1049732305279078
Jensen, A. S., Bach, K. M., Nordentoft, H. M., Møller, K. L., & Mariager-Anderson, K. (2024). Hvorfor deltager de ikke? Diskursive positioner i førsteårsstuderendes møde med peer-feedback (Why don't they participate? Discursive Positions in first-year Students' en-counter with Peer Feedback). Dansk Universitetspædagogisk Tidsskrift, 19(36). https://doi.org/10.7146/dut.v19i36.140456
Jensen, T. W. (2024). Når kunstig intelligens bliver en del af vejledningsrummet (When Artifi-cial Intelligence becomes part of the Supervision Context. Dansk Universitetspædagog-isk Tidsskrift, 19(36). https://doi.org/10.7146/dut.v19i36.140339
Jensen, T. W., & Nordentoft, H. M. (2022). Academic Writing Development of Master’s Thesis Pair Writers: Negotiating Writing Identities and Strategies. Journal of Academic Writing, 12(1), 50-67. https://doi.org/10.18552/joaw.v12i1.840
Lai, C. Y., Cheung, K. Y., & Chee Seng, C. (2023). Exploring the role of intrinsic motivation in ChatGPT adoption to support active learning: An extension of the technology acceptance model. Computers and education. Artificial intelligence, 5, 100178. https://doi.org/10.1016/j.caeai.2023.100178
Macbeth, D. (2001). On “reflexivity” in qualitative research: Two readings, and a third. Quali-tative Inquiry, 7(1), 35-68.
Maurya, R. K. (2023). Using AI Based Chatbot ChatGPT for Practicing Counseling Skills Through Role-Play. Journal of Creativity in Mental Health, 1-16. https://doi.org/10.1080/15401383.2023.2297857
Maurya, R. K. (2024). A qualitative content analysis of ChatGPT's client simulation role‐play for practising counselling skills. Counselling and psychotherapy research, 24(2), 614-630. https://doi.org/10.1002/capr.12699
Maurya, R. K., & DeDiego, A. C. (2023). Artificial intelligence integration in counsellor educa-tion and supervision: A roadmap for future directions and research inquiries. Counselling and psychotherapy research. https://doi.org/10.1002/capr.12727
McGrath, C., Farazouli, A. & Cerratto-Pargman, T. (2024) Generative AI chatbots in higher education: a review of an emerging research area. Higher Education 89, 1533–1549 (2025). https://doi.org/10.1007/s10734-024-01288-w
McLeod, J. (2013). Theory in counselling: using conceptual tools to facilitate understanding and guide action. In J. McLeod (Ed.), An Introduction to Counselling (pp. 57-80). Open University Press.
Molloy, E., Boud, D., & Henderson, M. (2020). Developing a learning-centred framework for feedback literacy. Assessment & Evaluation in Higher Education, 45(4), 527-540. https://doi.org/10.1080/02602938.2019.1667955
Morgan, D. L., & Nica, A. (2020). Iterative Thematic Inquiry: A New Method for Analyzing Qualitative Data. International Journal of Qualitative Methods, 19, 160940692095511. https://doi.org/10.1177/1609406920955118
Nordentoft, H. M., Hvass, H., Mariager-Anderson, K., Bengtsen, S. S., Smedegaard, A., & Warrer, S. D. (2019). Kollektiv Akademisk Vejledning. Fra forskning til praksis (Collective Academic Supervision - From Research to Practice). Aarhus Universitetsforlag.
Nordentoft, H. M., Jensen, T. W., & Bengtsen, S. S. (2020). ”Vi er rigtig meget ens”: Peer-dynamik i samarbejdet mellem specialeskrivende par (”We Are Very Much Alike”: Peer Dynamics in the Collaboration Between Thesis-Writing Pairs). Dansk Universitetspæda-gogisk Tidsskrift, 16(28).
Nordentoft, H. M., & Møller, K. L. (2020). ”Vi ved godt, at det bare er på ’note-plan´” - Studerendes digitale læringsstrategier i peer feedback via Screencast. (“We Know It’s Just at the ‘Note Stage’”: Students’ Digital Learning Strategies in Peer Feedback via Screencast) Tidsskriftet Læring og Medier (LOM), 13(23). https://doi.org/10.7146/lom.v13i23.122012
Nordentoft, H. M., & Møller, K. L. (2022). Emotionelt arbejde og læring i asynkron peer-feedback. (Emotion Work and Learning in Asynchronous Peer Feedback) Dansk Universitetspædagogisk Tidsskrift, 17(33), 97-115. https://doi.org/10.7146/dut.v17i33.129425
Nordentoft, H. M., Thomsen, R., & Wichmann-Hansen, G. (2013). Collective academic su-pervision: a model for participation and learning in higher education. Higher Education, 65(5), 581-593.
O’Donovan, B. (2017). How student beliefs about knowledge and knowing influence their satisfaction with assessment and feedback. Higher Education, 74(4), 617-633. https://doi.org/10.1007/s10734-016-0068-y
Phillips, L. J. (2011). The Promise of Dialogue. The dialogic turn in the production and com-munication of knowledge. John Benjamins Publishing Company.
Stöhr, C., Ou, A. W., & Malmström, H. (2024). Perceptions and usage of AI chatbots among students in higher education across genders, academic levels and fields of study. Com-puters and Education: Artificial Intelligence, 7, 100259.
White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-Smith, J., & Schmidt, D. C. (2023). A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT. arXiv.org. https://doi.org/10.48550/arxiv.2302.11382
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Helle Merete Nordentoft, Tine Wirenfeldt Jensen

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Articles published in the Journal of Learning and Media are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported Licens.
Authors retain copyright and grant the journal right of first publication; simultaneously articles are licensend under the Creative Commons Attribution license: Attribution-NonCommercial-NoDerviatives (by-nc-nd). Read about this license at https://creativecommons.org/licenses/by-nc-nd/3.0/
---
At LOM.dk, you will also find articles from the discontinued Journal for the Continuing and Further Education of the Danish Universities (UNEV). Note that special rules apply to UNEV articles:
It is the authors and any other copyright holder who have the copyright of articles published under the auspices of UNEV, and access to the articles is contingent on users acknowledging and complying with the associated legal guidelines:
- Users may download and print one copy of any UNEV publication for private studies or research.
- The redistribution of articles or the use of these for revenue-funded activities or commercial purposes are not allowed.
- It is not allowed to distribute the URLs of UNEV articles.