Virtual neutron scattering experiments - Training and preparing students for large-scale facility experiments


  • Julie Hougaard Overgaard Niels Bohr Institute, University of Copenhagen
  • Jesper Bruun IND
  • Michael May Department of Design and Communication, University of Southern Denmark
  • Linda Udby Niels Bohr Insitute, University of Copenhagen



e-learning, virtual experiments, hands-on, learning design


Dansk Vi beskriver, hvordan virtuelle eksperimenter kan udnyttes i et læringsdesign ved at forberede de studerende til hands-on-eksperimenter ved storskalafaciliteter. Vi illustrerer designet ved at vise, hvordan virtuelle eksperimenter bruges på Niels Bohr Institutets kandidatkursus om neutronspredning. I den sidste uge af kurset, rejser studerende til et storskala neutronspredningsfacilitet for at udføre neutronspredningseksperimenter. Vi bruger studerendes udsagn om deres oplevelser til at argumentere for, at arbejdet med virtuelle experimenter forbereder de studerende til at engagere sig mere frugtbart med eksperimenter ved at lade dem fokusere på fysikken og relevante data i stedet for instrumenternes funktion. Vi hævder, at det er, fordi de kan overføre deres erfaringer med virtuelle eksperimenter til rigtige eksperimenter. Vi finder dog, at læring stadig er situeret i den forstand, at kun kendskab til bestemte eksperimenter overføres. Vi afslutter med at diskutere de muligheder, som virtuelle eksperimenter giver. English We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering. In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred. We proceed to discuss the affordances of virtual experiments.


Julie Hougaard Overgaard, Niels Bohr Institute, University of Copenhagen

PhD student

Jesper Bruun, IND

Assistant Professor

Michael May, Department of Design and Communication, University of Southern Denmark

Associate professor

Linda Udby, Niels Bohr Insitute, University of Copenhagen

Associate professor


Barnett, M., Keating, T., Barab, S. A., and Hay, K. E. (2000). Conceptual change through building three-dimensional virtual models. In Fourth International Conference of the Learning Sciences. Edited by: Fishman, B. and O'Connor-Divelbiss, S (pp. 134-141).

Bodin, M. (2012). Mapping university students’ epistemic framing of computational physics using network analysis. Physical Review Special Topics-Physics Education Research, 8(1), 010115.

Bruun, J. (2011). ATD and CoP in a framework for investigating social networks in physics classrooms. Peer reviewed papers from a PhD course at the University of Copenhagen, 2010, 31.

Bruun, J. (2012). Networks in Physics Education Research (Doctoral dissertation, Ph. D. thesis, University of Copenhagen).

Danish Ministry of Education (2016). Introduktion til den danske kvalifikationsramme for livslang læring. Retrieved August 26. 2016 from:

De Jong, T., M. C. Linn and Z. C. Zacharia (2013). Physical and virtual laboratories in science and engineering education. Science 340(6130): 305-308.

Dolin, J. (2002). Fysikfaget i forandring. (Danish only) PhD thesis. Roskilde University, Denmark.

Domin, D. S. (1999). A content analysis of general chemistry laboratory manuals for evidence of higher-order cognitive tasks. Journal of Chemical Education 76(1): 109.

Gee, J. P. (2003). What video games have to teach us about learning and literacy. Computers in Entertainment (CIE), 1(1), 20-20.

Hougaard, J. (2015). Using virtual experiments as a preparation for large-scale facility experiments, Master’s thesis, Department of Science Education, University of Copenhagen (2015).

Jacobsen, L. B. (2008). Formål med eksperimentelt arbejde i fysikundervisningen. MONA, 4, 22-41.

Kirschner, P. A. (1992). Epistemology, practical work and academic skills in science education. Science & Education 1(3): 273-299.

Kolb, A. Y. and Kolb, D. A. (2012). Experiential learning theory. In Encyclopedia of the Sciences of Learning (pp. 1215-1219). Springer US.

Kolb, D. A. (2014). Experiential learning: Experience as the source of learning and development. FT press.

Kvale, S. (2007). Doing interviews. London: SAGE Publications.

Lave, J. and Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge university press.

Lefmann, K., P. K. Willendrup, L. Udby, B. Lebech, K. Mortensen, J. O. Birk, K. Klenø, E. Knudsen, P. Christiansen and J. Saroun (2008). Virtual experiments: the ultimate aim of neutron ray-tracing simulations. Journal of Neutron Research 16(3-4): 97-111.

Lefmann, K. and Nielsen, K. (1999). "McStas, a General Software Package for Neutron Ray-tracing Simulations", Neutron News 10, 20.

Lowe, R. (2001). Understanding information presented by complex animated diagrams. Multimedia learning-Cognitive and instructional issues, 65-74.

May, M. and Achiam, M.F. (2013), Virtual Laboratories in Chemistry, Biochemistry & Molecular Biology. Unpublished report, Department of Science Education, University of Copenhagen, pp. 1-74.

Mason, A., Yerushalmi, E., Cohen, E., and Singh, C. (2016). Learning from mistakes: The effect of students' written self-diagnoses on subsequent problem solving. The Physics Teacher, 54(2), 87-90.

Rebello, N. S., Zollman, D. A., Allbaugh, A. R., Engelhardt, P. V., Gray, K. E., Hrepic, Z., and Itza-Ortiz, S. F. (2004). Dynamic transfer: A perspective from physics education research. Transfer of Learning: Research and Perspectives. Greenwich: Information Age Publishing.

Rolfe, J. M., and Staples, K. J. (1988). Flight simulation (No. 1). Cambridge University Press.

Shaffer, D. W., Hatfield, D., Svarovsky, G. N., Nash, P., Nulty, A., Bagley, E., Frank, K, Rupp, A. A. and Mislevy, R. (2009). Epistemic network analysis: A prototype for 21st-century assessment of learning. International Journal of Learning and Media 1(2), 1-22.

Summers, M. (1982). Science Education and Meaningful Learning. School Science Review 64(227): 361-366.

Tamir, P. (1989). Training teachers to teach effectively in the laboratory. Science education 73(1): 59-69.

University of Copenhagen (2016): NFYK13021U Neutron Scattering. Retrieved August 26th, 2016 from

Udby, L., P.K. Willendrup, E. Knudsen, Ch. Niedermayer, U. Filges, N.B. Christensen, E. Farhi, B.O. Wells, K. Lefmann (2011). Analysing neutron scattering data using McStas virtual experiments. Nuclear Instruments and Methods in Physics Research A 634: S138–S143

Udby, L., P. Jensen, J. Bruun, P. Willendrup, H. Schober, J. Neuhaus, J. S. B. Nielsen, J. Pulz and K. Lefmann (2013). E-learning neutron scattering. Neutron News 24(1): 18-23.

Willendrup, P., Farhi, E., Knudsen, E., Filges, U., and Lefmann, K. (2014). McStas: Past, present and future. Journal of Neutron Research, 17(1), 35-43.

Winsløw, C. (2006). Didaktiske elementer-En indføring i matematikkens og naturfagenes didaktik. Biofolia.

Schematic of experimental set-up as students work with it





Hougaard Overgaard, J., Bruun, J., May, M., & Udby, L. (2016). Virtual neutron scattering experiments - Training and preparing students for large-scale facility experiments. Tidsskriftet Læring Og Medier (LOM), 9(16).