Blended Learning Analytics Model for Evaluation (BLAME). Et case-studie af universitetsunderviseres brug af Blackboard

  • Peter Musaeus Center for Health Sciences Education, Aarhus Universitet
  • Andreas Brændstrup Bennedsen Center for Health Sciences Education, Aarhus Universitet
  • Janne Saltoft Hansen Center for Health Sciences Education, Aarhus Universitet
  • Mads Ronald Dahl Center for Health Sciences Education, Aarhus Universitet
Nøgleord: Learning management system, learning analytics, evaluering.

Resumé

I denne artikel vil vi præsentere en strategi til inddragelse af læringsanalytik (learning analytics) ved evaluering af universitetsunderviseres brug af et nyt LMS på Aarhus Universitet: Blackboard. Vi diskuterer en model (BLAME: Blended Learning Analytics Model of Evaluation) for, hvordan kategorisering af kurser og data om læringsanalytik indsamlet på Blackboard kan integreres. Endvidere belyser vi, hvilke implikationer en sådan læringsanalytik kan have for blended learning ved at analysere to forskellige uddannelses-cases/illustrationer. Dernæst diskuterer vi pædagogisk udvikling i forbindelse med evalueringsrapport om underviseres brug af Blackboard som beslutningsstøtte for feedback og pædagogisk intervention. Artiklen slutter med en diskussion af, hvordan data til læringsanalytik bør indsamles i LMS og bruges til afrapportering og undervisningsudvikling.

Referencer

Beck, H. P., & Davidson, W. D. (2001). Establishing an early warning system: Predicting low grades in college students from survey of academic orientations scores. Research in Higher Education, 42:6;709-723

Bratt, S. (2007). A framework for assessing the pedagogical utility of learning management systems. Proceedings of world conference on elearning in corporate, government, healthcare, and higher education. Chesapeake, VA: AACE pp. 218–225.

Bratt, S., Coulson, I., & Kostasshuk, S. (2009). Utilizing a learning management system in a blended learning design to enhance self-regulated learning strategies in a baccalaureate nursing fundamentals course. International conference on information communication technologies in education, (Corfu, Greece)

Collins A. A, Joseph D & Bielaczyc K (2004) Design Research: Theoretical and Methodological Issues. Journal of the Learning Sciences, 13:1;15-42

Davies, I., Green, P., Rosemann, M., Indulska, M., & Gallo, S. (2006). How do practitioners use conceptual modeling in practice? Data & Knowledge Engineering, 58:3; 358–380

Dawson, S. P., McWilliam, E., & Tan, J. P. L. (2008). Teaching smarter: How mining ICT data can inform and improve learning and teaching practice. Melbourne. Proceedings ascilite pp. 221-230

Dawson, S., Bakharia, A., & Heathcote, E. (2010). SNAPP: Realising the affordances of real-time SNA within networked learning environments. In: Proceedings of the 7th International Conference on Networked Learning 2010, Aalborg, Denmark. pp.125-133

Educational it (2014) Strategi og ledelse, mere om Educational IT. Aarhus Universitet. http://medarbejdere.au.dk/strategi/problemanalysen/udviklingsproces2011/faktaomforandringernehvaderbesluttet/tvaerinitiv/kvalitetogeducationalit/ (besøgt sidst 13.3.2015)

Garrison D.R and Kanuka H. (2004) Blended learning: Uncovering its transformative potential in higher education. The Internet and Higher Education, 7:2;95-105

Garrote Jurado, R. (2013). Barriers to a wider Implementation of LMS in Higher Education: a Swedish case study, 2006-2011. E-learning and Education (eleed) issue9

Gibbons, A. S., & Brewer, E. K. (2005). Elementary principles of design languages and design notation systems for instructional design. Innovations in instructional technology: Essays in honor of M. David Merrill, 111-130

Goodrich, H. (1996). Understanding rubrics. Educational Leadership. 54:4;14-17

Lockyer L, Heathcote E, and Dawson S (2013). Informing Pedagogical Action: Aligning Learning Analytics With Learning Design. American Behavioral Scientist, 12:3;1-21

Macfadyen, L., & Dawson, S. (2012). Numbers Are Not Enough. Why e-Learning Analytics Failed to Inform an Institutional Strategic Plan. Educational Technology & Society, 15:3;149-163

Mazza, R., & Dimitrova, V. (2004). Visualising student tracking data to support instructors in web-based distance education. In: Proceedings of the 13th international World Wide Web conference on Alternate track papers & posters ACM pp. 154-161

Morris, L. V., Finnegan, C., & Wu, S. S. (2005). Tracking student behavior, persistence, and achievement in online courses. The Internet and Higher Education, 8:3;221-231.

Naveh G, Tubin D, Pliskin N. (2010). Student LMS use and satisfaction in academic institutions: The organizational perspective. The Internet and Higher Education, 13:3;127-133

Pardo, A., & Kloos, C. D. (2011, February). Stepping out of the box: towards analytics outside the learning management system. In: Proceedings of the 1st International Conference on Learning Analytics and Knowledge ACM pp. 163-167

Porter W.W, Graham C.R, Spring K.A and Welch K.R (2014). Blended learning in higher education: Institutional adoption and implementation, Computers & Education, 75;185-195

Recker, J. (2010). Continued use of process modeling grammars: the impact of individual difference factors. European Journal of Information Systems, 19:1;76–92

Publiceret
2015-02-27
Citation/Eksport
Musaeus, P., Bennedsen, A., Hansen, J., & Dahl, M. (2015). Blended Learning Analytics Model for Evaluation (BLAME). Et case-studie af universitetsunderviseres brug af Blackboard. Tidsskriftet Læring Og Medier (LOM), 8(13). https://doi.org/10.7146/lom.v8i13.20532