Hvornår er ræsonnementer matematiske?
PDF

Citation/Eksport

Højbjerg, K., & Bundgaard, M. (2024). Hvornår er ræsonnementer matematiske?. MONA - Matematik- Og Naturfagsdidaktik, 24(4), 4. Hentet fra https://tidsskrift.dk/mona/article/view/151938

Resumé

Kommentar til Emilie Madeline Hersaa Nehammer, Anna Louise Eriksen & Erik Ottar Jensens artikel: “Udvikling af matematisk ræsonnementskompetence gennem brætspillet Othello”, MONA, 2024(3)

PDF

Referencer

Ernest, P. (1986). Games: A rationale for their use in the teaching of mathematics in school. Mathematics in School, 15(1), 2‑5. https://www.jstor.org/stable/30216298

Jeannotte, D. & Kieran, C. (2017). A conceptual model of mathematical reasoning for school mathematics. Educational Studies in Mathematics, 96(1), 1‑16. https://doi.org/10.1007/s10649‑017‑9761‑8

Niss, M. (2003). Mathematical competencies and the learning of mathematics: The Danish KOM project. I A. Gagatsis & S. Papastavridis (red.), 3rd Mediterranean Conference on Mathematical Education (s. 1‑12). https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b7b50cfc513371b27ce0b90d4dc19e45b5c7828e

Stylianides, A. J. (2007). Introducing young children to the role of assumptions in proving. Mathematical Thinking and Learning, 9(4), 361‑385. https://doi.org/10.1080/10986060701533805

Stylianides, A. J. (2016). Proving in the elementary mathematics classroom. Oxford University Press.