Use of AI-powered technologies in upper secondary language learning

Current tendencies and future perspectives

Authors

DOI:

https://doi.org/10.7146/lt.v9i14.136900

Abstract

For many years, language technologies based on artificial intelligence (AI) have been influencing foreign language teaching. This is only expected to increase with the introduction of tools like ChatGPT. Until now, particularly machine translation (MT) has challenged Danish upper secondary language teachers, and the reaction has typically been to prohibit MT and thus not integrate it into teaching. However, this can be problematic if students use MT anyway, e.g. because it can result in inappropriate use of the technology. Likewise, today, we often come across machine translations and other AI-based texts online. This article presents the results of a survey conducted in language subjects of upper secondary students' use of and attitudes towards MT. The study shows a widespread use of MT, e.g. for homework and hand-in assignments. Against this background, and based on digital literacy theory, perspectives in incorporating AI-powered language technologies into foreign language teaching are discussed.

Author Biographies

Kristine Bundgaard, Aalborg University

Associate Professor, Department of Culture and Learning

Anders Kalsgaard Møller, Aalborg University

Associate Professor, Department of Culture and Learning

References

Bowker, L. (2021a). Promoting Linguistic Diversity and Inclusion: Incorporating Machine Translation Literacy into Information Literacy Instruction for Undergraduate Students. The International Journal of Information, Diversity, & Inclusion, 5(3), 127-151. https://doi.org/10.33137/ijidi.v5i3.36159

Bowker, L. (2021b). Machine translation use outside the language industries: a comparison of five delivery formats for machine translation literacy instructions. Translation and Interpreting Technology Online, 25-36. https://doi.org/10.26615/978-954-452-071-7_004

Brunø, L. (2023). Sådan bliver rettearbejdet igen meningsfuldt: Evaluering af skriftlig tysk i gymnasiet. Sproglæreren, 1/2023, 20-23.

Børne- og Undervisningsministeriet (2023). Hjælpemiddeloversigt. Accessed [30 March, 2023] at: https://www.uvm.dk/-/media/filer/uvm/udd/gym/xls22/maj/220506-hjaelpemidler.xlsx

Carré, A., Kenny, D., Rossi, C., Sánchez-Gijón, P. & Torres-Hostench, O. (2022). Machine translation for language learners. In: Kenny, D. (ed.), Machine translation for everyone: Empowering users in the age of artificial intelligence, 187-207. Berlin: Language Science Press. https://doi.org/10.5281/zenodo.6760024

Caviglia, F., Dalsgaard, C., Boie, M. A. K. & Thomsen, M. B. (2021). Undersøgelse af digitale teknologier i fremmedsprogsundervisningen: Sproglæreres anvendelse af digitale teknologier i gymnasiet. DPU – Danmarks Institut for Pædagogik og Uddannelse, Aarhus Universitet. Accessed [7 April, 2023] at: https://pure.au.dk/portal/files/213331375/FREMDitSPROG_sporgeskemaundersogelse_marts2021.pdf

Chung, E. S. (2020). The effect of L2 proficiency on post-editing machine translated texts. Journal of Asia TEFL, 17(1), 182-193. https://doi.org/10.18823/asiatefl.2020.17.1.11.182

Cronin, M. (2010). The Translation Crowd. Revista Tradumàtica: traducció i tecnologies de la informació i la comunicació, 8, 1-7. https://doi.org/10.5565/rev/tradumatica.100

Dale, R. (2021). GPT-3 – What’s it good for? Natural Language Engineering, 27, 113-118. https://doi.org/10.1017/S1351324920000601

Dalsgaard, C., Boie, M. A. K. & Caviglia, F. (2022). Frem dit sprog: Digitale værktøjer i sprogfagene. DPU – Danmarks Institut for Pædagogik og Uddannelse, Aarhus Universitet. Accessed [7 April, 2023] at: https://pure.au.dk/portal/files/279093397/Fremditsprog_final_online.pdf

Dalsgaard, C., Christensen, M. V., Caviglia, F., Andersen, M. S., Kjærgaard, H. W. & Boie, M. A. K. (2023). Sprogteknologier i fremmedsprogsundervisningen: indkredsning af en sprogfaglig teknologiforståelse. Tidsskriftet Læring og Medier, 28, 1-23.

Dorst, A. G., Santos Ângelo Salgado Valdez, S., & Bouman, H. M. C. (2022). Machine translation in the multilingual classroom: how, when and why do humanities students at a Dutch university use machine translation? Translation And Translanguaging In Multilingual Contexts, 8(1), 49-66. https://doi.org/10.1075/ttmc.00080.dor

Ducar, C. & Schocket, D. H. (2018). Machine translation and the L2 classroom: Pedagogical perspectives for making peace with Google translate. Foreign Language Annals, 51, 779-795. https://doi.org/10.1111/flan.12366

European Commission (2023). Use Scenarios & Practical Examples of AI Use in Education: Briefing report No. 3 by the European Digital Education Hub’s squad on artificial intelligence in education. Accessed [16 August, 2023] at: https://education.ec.europa.eu/news/the-european-digital-education-hubs-monthly-theme-artificial-intelligence

Gatt, A. & Krahmer, B. (2018). Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation. Journal of Artificial Intelligence Research, 61, 65-170. https://doi.org/10.1613/jair.5477

Gretter, S. & Yadav, A. (2016). Computational thinking and media & information literacy: An integrated approach to teaching twenty-first century skills. TechTrends, 60, 510-516. https://doi.org/10.1007/s11528-016-0098-4

González-Pérez, L. I., & Ramírez-Montoya, M. S. (2022). Components of Education 4.0 in 21st century skills frameworks: systematic review. Sustainability, 14(3), 1-31.

Griffin, P. & Care, E. (Eds.). (2014). Assessment and teaching of 21st century skills: Methods and approach. Springer.

Grizzle, A., Moore, P., Dezuanni, M., Asthana, S., Wilson, C., Banda, F. & Onumah, C. (2014). Media and information literacy: policy and strategy guidelines. 1-195, UNESCO.

Jolley, J. R. & Maimone, L. (2022). Thirty Years of Machine Translation in Language Teaching and Learning: A Review of the Literature. L2 Journal, 14(1), 26-44. https://doi.org/10.5070/L214151760

Klimova, B., Pikhart, M., Delorme Benites, A., Lehr, C. & Sanchez-Stockhammer, C. (2023). Neural machine translation in foreign language teaching and learning: a systematic review. Education and Information Technologies, 28(1), 663-682. https://doi.org/10.1007/s10639-022-11194-2

Koehn, P. (2010). Statistical Machine Translation. Cambridge University Press.

Lee, S. M. (2023). The effectiveness of machine translation in foreign language education: a systematic review and meta-analysis. Computer Assisted Language Learning, 36(1-2), 103-125. https://doi.org/10.1080/09588221.2021.1901745

Liu, D. & Zhang, X. (2015). Machine translation: general. In: Sin-wai, C. (ed.), The Routledge Encyclopedia of Translation Technology, 105-119. Routledge. Long, D. & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. In: Proceedings of the 2020 CHI conference on human factors in computing systems, 1-16. https://doi.org/10.1145/3313831.3376727

Martindale, M. J. & Carpuat, M. (2018). Fluency over adequacy: a pilot study in measuring user trust in imperfect MT. Proceedings of AMTA 2018, 17-25.

Microsoft (2023). Introducing Microsft 365 Copilot – your copilot for work. Accessed [April 2, 2023] at https://blogs.microsoft.com/blog/2023/03/16/introducing-microsoft-365-copilot-your-copilot-for-work/

Ng, D. T. K., Leung, J. K. L., Chu, S. K. W. & Qiao, M. S. (2021). Conceptualizing AI literacy: An exploratory review. Computers and Education: Artificial Intelligence, 2. https://doi.org/10.1016/j.caeai.2021.100041

Nord, C. (1997). A Functional Typology of Translations. In: A. Trosborg (ed.), Text Typology and Translation, 43-66. John Benjamins Publishing Company. https://doi.org/10.1075/btl.26.05nor

O’Brien, S. (2017). Machine Translation and Cognition. In: Schwieter, J. W. & Ferreira, A. (eds.), The Handbook of Translation and Cognition, 313-331. John Wiley & Sons, Inc. https://doi.org/10.1002/9781119241485.ch17

O’Brien, S. (2022). How to deal with errors in machine translation: Post-editing. In: Kenny, D. (ed.), Machine translation for everyone: Empowering users in the age of artificial intelligence, 105-120. Berlin: Language Science Press. https://doi.org/10.5281/zenodo.6759982

O’Brien, S. & Ehrensberger-Dow, M. (2020). MT Literacy – A cognitive view. Translation, Cognition and Behavior, 3(2), 145-164. https://doi.org/10.1075/tcb.00038.obr

O’Neill, E. M. (2019). Training students to use online translators and dictionaries: The impact on second language writing scores. International Journal of Research Studies in Language Learning, 8(2), 47-65. https://doi.org/10.5861/ijrsll.2019.4002

OpenAI (2023a). Introducing ChatGPT. Accessed [March 29, 2023] at https://openai.com/blog/chatgpt

OpenAI (2023b). GPT-4 System Card. Accessed [April 9, 2023] at https://cdn.openai.com/papers/gpt-4-system-card.pdf

Pym, A. (2019). How automation through neural machine translation might change the skill sets of translators. Translation in the digital era. Kuala Lumpur: Universiti Sains Islam Malaysia, 20-22 August 2019. Unpublished manuscript. Accessed [March 11, 2020] at https://www.academia.edu/40200406/How_automation_through_neural_machine_translation_might_change_the_skill_sets_of_translators

Schwab K. (2017). The fourth industrial revolution. Currency. Vold, E. T. (2018). Using Machine-Translated Texts to Generate L3 Learners’ Metalinguistic Talk. In: Haukås, A., Bjørke, C. & Dypedahl, M. (eds.), Metacognition in language learning and teaching, 67-97. Routledge. https://doi.org/10.4324/9781351049146-5

Way, A. (2013). Traditional and Emerging Use-Cases for Machine Translation. Proceedings of Translating and the Computer 35, 1-12.

Wilson, C., Grizzle, A., Tuazon, R., Akyempong, K. & Cheung, C. K. (2014). Media and information literacy curriculum for teachers (1-17). UNESCO Publishing.

Additional Files

Published

2024-01-17

How to Cite

Bundgaard, K., & Kalsgaard Møller, A. (2024). Use of AI-powered technologies in upper secondary language learning: Current tendencies and future perspectives. Learning Tech, 9(14), 14–35. https://doi.org/10.7146/lt.v9i14.136900