Use of AI-powered technologies in upper secondary language learning
Current tendencies and future perspectives
DOI:
https://doi.org/10.7146/lt.v9i14.136900Resumé
Sprogteknologier, der er baseret på kunstig intelligens (AI), har påvirket fremmedsprogsundervisningen i mange år, og dette forventes kun at tiltage med introduktionen af værktøjer som ChatGPT. Hidtil har særligt maskinoversættelse udfordret fremmedsprogslærere på danske ungdomsuddannelser, og reaktionen har oftest været at forbyde brugen og dermed ikke integrere teknologien i undervisningen. Det kan imidlertid være problematisk, hvis eleverne alligevel bruger maskinoversættelse, da det bl.a. kan resultere i, at de bruger teknologien på uhensigtsmæssige måder. Ligeledes sker det ofte i dag, at vi støder på maskinoversættelser og andre AI-baserede tekster på internettet. I denne artikel præsenteres en undersøgelse af gymnasieelevers brug af og holdninger til maskinoversættelse. Den indsamlede empiri er baseret på spørgeskemaundersøgelser i sprogfag på HHX og HTX. Undersøgelsen viser en udbredt brug af maskinoversættelse, bl.a. ifm. lektier og afleveringsopgaver. På denne baggrund og med udgangspunkt i teori om digital literacy diskuteres potentielle perspektiver i at inddrage AI-støttede sprogteknologier i fremmedsprogsundervisningen.
Referencer
Bowker, L. (2021a). Promoting Linguistic Diversity and Inclusion: Incorporating Machine Translation Literacy into Information Literacy Instruction for Undergraduate Students. The International Journal of Information, Diversity, & Inclusion, 5(3), 127-151. https://doi.org/10.33137/ijidi.v5i3.36159
Bowker, L. (2021b). Machine translation use outside the language industries: a comparison of five delivery formats for machine translation literacy instructions. Translation and Interpreting Technology Online, 25-36. https://doi.org/10.26615/978-954-452-071-7_004
Brunø, L. (2023). Sådan bliver rettearbejdet igen meningsfuldt: Evaluering af skriftlig tysk i gymnasiet. Sproglæreren, 1/2023, 20-23.
Børne- og Undervisningsministeriet (2023). Hjælpemiddeloversigt. Accessed [30 March, 2023] at: https://www.uvm.dk/-/media/filer/uvm/udd/gym/xls22/maj/220506-hjaelpemidler.xlsx
Carré, A., Kenny, D., Rossi, C., Sánchez-Gijón, P. & Torres-Hostench, O. (2022). Machine translation for language learners. In: Kenny, D. (ed.), Machine translation for everyone: Empowering users in the age of artificial intelligence, 187-207. Berlin: Language Science Press. https://doi.org/10.5281/zenodo.6760024
Caviglia, F., Dalsgaard, C., Boie, M. A. K. & Thomsen, M. B. (2021). Undersøgelse af digitale teknologier i fremmedsprogsundervisningen: Sproglæreres anvendelse af digitale teknologier i gymnasiet. DPU – Danmarks Institut for Pædagogik og Uddannelse, Aarhus Universitet. Accessed [7 April, 2023] at: https://pure.au.dk/portal/files/213331375/FREMDitSPROG_sporgeskemaundersogelse_marts2021.pdf
Chung, E. S. (2020). The effect of L2 proficiency on post-editing machine translated texts. Journal of Asia TEFL, 17(1), 182-193. https://doi.org/10.18823/asiatefl.2020.17.1.11.182
Cronin, M. (2010). The Translation Crowd. Revista Tradumàtica: traducció i tecnologies de la informació i la comunicació, 8, 1-7. https://doi.org/10.5565/rev/tradumatica.100
Dale, R. (2021). GPT-3 – What’s it good for? Natural Language Engineering, 27, 113-118. https://doi.org/10.1017/S1351324920000601
Dalsgaard, C., Boie, M. A. K. & Caviglia, F. (2022). Frem dit sprog: Digitale værktøjer i sprogfagene. DPU – Danmarks Institut for Pædagogik og Uddannelse, Aarhus Universitet. Accessed [7 April, 2023] at: https://pure.au.dk/portal/files/279093397/Fremditsprog_final_online.pdf
Dalsgaard, C., Christensen, M. V., Caviglia, F., Andersen, M. S., Kjærgaard, H. W. & Boie, M. A. K. (2023). Sprogteknologier i fremmedsprogsundervisningen: indkredsning af en sprogfaglig teknologiforståelse. Tidsskriftet Læring og Medier, 28, 1-23.
Dorst, A. G., Santos Ângelo Salgado Valdez, S., & Bouman, H. M. C. (2022). Machine translation in the multilingual classroom: how, when and why do humanities students at a Dutch university use machine translation? Translation And Translanguaging In Multilingual Contexts, 8(1), 49-66. https://doi.org/10.1075/ttmc.00080.dor
Ducar, C. & Schocket, D. H. (2018). Machine translation and the L2 classroom: Pedagogical perspectives for making peace with Google translate. Foreign Language Annals, 51, 779-795. https://doi.org/10.1111/flan.12366
European Commission (2023). Use Scenarios & Practical Examples of AI Use in Education: Briefing report No. 3 by the European Digital Education Hub’s squad on artificial intelligence in education. Accessed [16 August, 2023] at: https://education.ec.europa.eu/news/the-european-digital-education-hubs-monthly-theme-artificial-intelligence
Gatt, A. & Krahmer, B. (2018). Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation. Journal of Artificial Intelligence Research, 61, 65-170. https://doi.org/10.1613/jair.5477
Gretter, S. & Yadav, A. (2016). Computational thinking and media & information literacy: An integrated approach to teaching twenty-first century skills. TechTrends, 60, 510-516. https://doi.org/10.1007/s11528-016-0098-4
González-Pérez, L. I., & Ramírez-Montoya, M. S. (2022). Components of Education 4.0 in 21st century skills frameworks: systematic review. Sustainability, 14(3), 1-31.
Griffin, P. & Care, E. (Eds.). (2014). Assessment and teaching of 21st century skills: Methods and approach. Springer.
Grizzle, A., Moore, P., Dezuanni, M., Asthana, S., Wilson, C., Banda, F. & Onumah, C. (2014). Media and information literacy: policy and strategy guidelines. 1-195, UNESCO.
Jolley, J. R. & Maimone, L. (2022). Thirty Years of Machine Translation in Language Teaching and Learning: A Review of the Literature. L2 Journal, 14(1), 26-44. https://doi.org/10.5070/L214151760
Klimova, B., Pikhart, M., Delorme Benites, A., Lehr, C. & Sanchez-Stockhammer, C. (2023). Neural machine translation in foreign language teaching and learning: a systematic review. Education and Information Technologies, 28(1), 663-682. https://doi.org/10.1007/s10639-022-11194-2
Koehn, P. (2010). Statistical Machine Translation. Cambridge University Press.
Lee, S. M. (2023). The effectiveness of machine translation in foreign language education: a systematic review and meta-analysis. Computer Assisted Language Learning, 36(1-2), 103-125. https://doi.org/10.1080/09588221.2021.1901745
Liu, D. & Zhang, X. (2015). Machine translation: general. In: Sin-wai, C. (ed.), The Routledge Encyclopedia of Translation Technology, 105-119. Routledge. Long, D. & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. In: Proceedings of the 2020 CHI conference on human factors in computing systems, 1-16. https://doi.org/10.1145/3313831.3376727
Martindale, M. J. & Carpuat, M. (2018). Fluency over adequacy: a pilot study in measuring user trust in imperfect MT. Proceedings of AMTA 2018, 17-25.
Microsoft (2023). Introducing Microsft 365 Copilot – your copilot for work. Accessed [April 2, 2023] at https://blogs.microsoft.com/blog/2023/03/16/introducing-microsoft-365-copilot-your-copilot-for-work/
Ng, D. T. K., Leung, J. K. L., Chu, S. K. W. & Qiao, M. S. (2021). Conceptualizing AI literacy: An exploratory review. Computers and Education: Artificial Intelligence, 2. https://doi.org/10.1016/j.caeai.2021.100041
Nord, C. (1997). A Functional Typology of Translations. In: A. Trosborg (ed.), Text Typology and Translation, 43-66. John Benjamins Publishing Company. https://doi.org/10.1075/btl.26.05nor
O’Brien, S. (2017). Machine Translation and Cognition. In: Schwieter, J. W. & Ferreira, A. (eds.), The Handbook of Translation and Cognition, 313-331. John Wiley & Sons, Inc. https://doi.org/10.1002/9781119241485.ch17
O’Brien, S. (2022). How to deal with errors in machine translation: Post-editing. In: Kenny, D. (ed.), Machine translation for everyone: Empowering users in the age of artificial intelligence, 105-120. Berlin: Language Science Press. https://doi.org/10.5281/zenodo.6759982
O’Brien, S. & Ehrensberger-Dow, M. (2020). MT Literacy – A cognitive view. Translation, Cognition and Behavior, 3(2), 145-164. https://doi.org/10.1075/tcb.00038.obr
O’Neill, E. M. (2019). Training students to use online translators and dictionaries: The impact on second language writing scores. International Journal of Research Studies in Language Learning, 8(2), 47-65. https://doi.org/10.5861/ijrsll.2019.4002
OpenAI (2023a). Introducing ChatGPT. Accessed [March 29, 2023] at https://openai.com/blog/chatgpt
OpenAI (2023b). GPT-4 System Card. Accessed [April 9, 2023] at https://cdn.openai.com/papers/gpt-4-system-card.pdf
Pym, A. (2019). How automation through neural machine translation might change the skill sets of translators. Translation in the digital era. Kuala Lumpur: Universiti Sains Islam Malaysia, 20-22 August 2019. Unpublished manuscript. Accessed [March 11, 2020] at https://www.academia.edu/40200406/How_automation_through_neural_machine_translation_might_change_the_skill_sets_of_translators
Schwab K. (2017). The fourth industrial revolution. Currency. Vold, E. T. (2018). Using Machine-Translated Texts to Generate L3 Learners’ Metalinguistic Talk. In: Haukås, A., Bjørke, C. & Dypedahl, M. (eds.), Metacognition in language learning and teaching, 67-97. Routledge. https://doi.org/10.4324/9781351049146-5
Way, A. (2013). Traditional and Emerging Use-Cases for Machine Translation. Proceedings of Translating and the Computer 35, 1-12.
Wilson, C., Grizzle, A., Tuazon, R., Akyempong, K. & Cheung, C. K. (2014). Media and information literacy curriculum for teachers (1-17). UNESCO Publishing.
Yderligere filer
Publiceret
Citation/Eksport
Nummer
Sektion
Licens
Forfatterne og Læremiddel.dk.
Må ikke bruges kommercielt.