Investigating in-service Norwegian primary school teachers’ modelling specific pedagogical content knowledge

Authors

  • Pamela Helder
  • Arne Jakobsen

DOI:

https://doi.org/10.7146/nomad.v30i4.164704

Keywords:

mathematical modelling, primary school mathematics, modelling specific pedagogical content knowledge

Abstract

The article investigates the changes in modelling specific pedagogical content knowledge (MsPCK) among practicing Norwegian primary school teachers resulting from a single module intervention within a continuing education program. A measure was administered to a group of 15 participants, and pre- and post-test results report on growth in four dimensions of MsPCK knowledge about mathematical modelling theory, tasks, instruction, and diagnostics. An independent-sample Mann Whitney U-test showed that post-test scores were significantly higher than pre-test score
(p < 0.001), both for total test scores, and scores for each of the four dimensions. On the item level, a significant change in scores was found for 33 items. Supported by this analysis, the findings of this study indicate a pattern of increased modelling specific pedagogical content knowledge with this group of practicing teachers, recommending the inclusion of a modelling module in future continuing education courses.

References

Adler, J., Ball, D., Krainer, K., Lin, F.-L., & Novotna, J. (2005). Reflections on an emerging field: Researching mathematics teacher education. Educational Studies in Mathematics, 60, 359–381.

https://doi.org/10.1007/s10649-005-5072-6

Alwast, A., & Vorhölter, K. (2022). Measuring pre-service teachers’ noticing competencies within a mathematical modeling context – An analysis of an instrument. Educational Studies in Mathematics, 109(2), 263–285.

https://doi.org/10.1007/s10649-021-10102-8

Anhalt, C. O., Cortez, R., & Bennett, A. B. (2018). The emergence of mathematical modeling competencies: An investigation of prospective secondary mathematics teachers. Mathematical Thinking and Learning, 20(3), 202–221. https://doi.org/10.1080/10986065.2018.1474532

Asempapa, R. S., & Love, T. S. (2021). Teaching math modeling through 3D-printing: Examining the influence of an integrative professional development. School Science and Mathematics, 121(2), 85–95.

https://doi.org/10.1111/ssm.12448

Baumert, J., & Kunter, M. (2013). The COACTIV model of teachers’ professional competence. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand, M. (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers: Results from the COACTIV project (pp. 25–48). Springer. https://doi.org/10.1007/978-1-4614-5149-5_2

Blömeke, S., & Kaiser, G. (2014). Theoretical framework, study design and main results of TEDS-M. In S. Blömeke, F. J. Hsieh., G. Kaiser, & W. H. Schmidt (Eds.), International Perspectives on Teacher Knowledge, Beliefs and Opportunities to Learn (pp. 19–47). Springer.

https://doi.org/10.1007/978-94-007-6437-8_2

Blömeke S., Gustafsson, J.-E., & Shavelson R (2015). Beyond dichotomies – competence viewed as a continuum. Zeitschrift für Psychologie, 223(1), 3–13. https://doi.org/10.1027/2151-2604/a000194

Bloom, B. S. (1956). Taxonomy of educational objectives: The classification of educational goals (1st ed.). Longman Group.

Blum, W. (2011). Can mathematical modelling be taught and learnt? Some answers from empirical research. In G. Kaiser, B. Werner, R. B. Ferri, & G. Stillman (Eds.), Trends in Teaching and Learning of Mathematical Modelling (pp. 15–30). Springer. ttps://doi.org/10.1007/978-94-007-0910-2_3

Blum, W., & Leiß, D. (2007). How do students and teachers deal with modelling problems. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical Modelling: Education, Engineering and Economics (pp. 222–231). Horwood. https://doi.org/10.1533/9780857099419.5.221

Borromeo Ferri, R., & Blum, W. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1), 41–58.

Borromeo Ferri, R., & Blum, W. (2010). Mathematical modelling in teacher education – Experiences from a modelling seminar. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of Sixt Congress of the European Society for Research in Mathematics Education (pp. 2046–2055). ERME.

Borromeo Ferri, R. (2018). Learning How to Teach Mathematical Modeling in School and Teacher Education. Springer.

https://doi.org/10.1007/978-3-319-68072-9

Botha, H., Coetzee, C., & Zweers, L. (2023). Teaching measurement: The role of mathematics teachers’ enacted PCK on gain in learner outcomes. Infinity Journal, 12(2), 307–322. https://doi.org/10.22460/infinity.v12i2.p307-322

Buchholtz, N., Kwon, O.N., Lee, K., Nortvedt, G. (2022). A comparative analysis of the orientation to mathematical competency acquisition in school curricula in Germany, Korea, and Norway. In Buchholtz, N., Schwarz, B., Vorhölter, K. (Eds.), Initiationen Mathematikdidaktischer Forschung. (pp. 545–566). Springer Spektrum.

https://doi.org/10.1007/978-3-658-36766-4_28

Campbell, P. F., Nishio, M., Smith, T. M., Clark, L. M., Conant, D. L., Rust, A. H., ... & Choi, Y. (2014). The relationship between teachers’ mathematical content and pedagogical knowledge, teachers’ perceptions, and student achievement. Journal for Research in Mathematics Education, 45(4), 419–459. https://doi.org/10.5951/jresematheduc.45.4.0419

Cardoso, L., Da Ponte, J. P., & Quaresma, M. (2023). The development of pedagogical content knowledge of prospective primary teachers in a lesson study. International Journal for Lesson & Learning Studies, 12(2), 152–165. https://doi.org/10.1108/ijlls-02-2022-0027

Cevikbas, M., Kaiser, G., & Schukajlow, S. (2022). A systematic literature review of the current discussion on mathematical modelling competencies: state-of-the-art developments in conceptualizing, measuring, and fostering. Educational Studies in Mathematics, 109, 205–236. https://doi.org/10.1007/s10649-021-10104-6

Chamberlin, S., Payne, A. M., & Kettler, T. (2022). Mathematical modeling: a positive learning approach to facilitate student sense making in mathematics. International Journal of Mathematical Education in Science and Technology, 53(4), 858–871. https://doi.org/10.1080/0020739X.2020.1788185

Chan, C. M. E., Ng, K. E. D., Lee, N. H., & Dindyal, J. (2019). Problems in real-world context and mathematical modelling. In T. Toh, B. Kaur, & E. Tay (Eds.), Mathematics Education in Singapore. Mathematics Education – An Asian Perspective (pp. 195–216). Springer.

https://doi.org/10.1007/978-981-13-3573-0_9

Desimone, L. M. (2009). Improving impact studies of teachers’ professional development: Toward better conceptualizations and measures. Educational Researcher, 38(3), 181–199. https://doi.org/10.3102/0013189X08331140

English, L., & Watters, J. (2005, July). Mathematical modelling with 9-year-olds. In H. Chick & J. Vincent (Eds), Proceedings of the 29th Annual Conference of the International Group for the Psychology of Mathematics Education, (pp. 297–304). University of Melbourne.

Ferri, R. B. (2019, February). Assessing Teaching Competencies for Mathematical Modelling. In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Eds.) (2020), Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education (pp. 1154–1161). Freudenthal Group & Freudenthal Institute, Utrecht University and ERME.

Greefrath, G., Siller, H.-S., Klok, Heiner, & Wess, R. (2021). Pre-service secondary teachers’ pedagogical content knowledge for the teaching of mathematical modelling. Educational Studies in Mathematics, 109, 383–407. https://doi.org/10.1007/s10649-021-10038-z

Hattie, J. (2008). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Routledge.

Helder, P. (2024). Norwegian primary teachers’ shared understandings of mathematical modelling. In H. S. Siller, V. Geiger, & G. Kaiser (Eds.), Researching Mathematical Modelling Education in Disruptive Times (pp. 295–304). Springer. https://doi.org/10.1007/978-3-031-53322-8_23

Lesh, R. & Doerr, H. M. (2003). Foundations of a models and modeling perspective on mathematics teaching, learning, and problem solving. In R. Lesh & H. M. Doerr (Eds.), Beyond Constructivist Models and Modelling Perspective on Mathematics Problem Solving, Learning, and Teaching (pp. 3–33). Lawrence Erlbaum.

Nehrkorn, C., Jenßen, L., Borromeo Ferri, R., & Eilerts, K. (2022a). Professionskompetenzen zum lehren mathematischen modellierens in der primarstufe erfassen. In IDMI-Primar Goethe-Universität Frankfurt (Ed.), Beiträge zum Mathematikunterricht 2022: 56. Jahrestagung der Gesellschaft für Didaktik der Mathematik (pp. 1061–1064). WTM-Verlag.

Nehrkorn, C., Jenßen, L., Borromeo Ferri, R., & Eilerts, K. (2022b). Assessing Professional Competencies for Teaching Mathematical Modelling in Primary School [Conference presentation]. ICTMA20, Wurzburg, Germany.

Niss, M., & Blum, W. (2020). The learning and teaching of mathematical modelling. Routledge.

Norwegian Directorate for Education [UDIR] (2019). Læreplan i matematikk (MAT1-01). Fastsatt som forskrift. Læreplanverket for Kunnskapsløftet-2019. UDIR. Retrieved from: https://www.udir.no/lk20/mat01-05?lang=nob

Norwegian Directorate for Education [UDIR] (2024). Videreutdanning for lærere. UDIR. Retrieved from: https://www.udir.no/kvalitet-og-kompetanse/etter-og-videreutdanning/larere/om-videreutdanning-for-larere/#a202209

OECD. (2023), ”PISA 2022 Mathematics Framework”, in PISA 2022 Assessment and Analytical Framework, OECD Publishing.

https://doi.org/10.1787/7ea9ee19-en

Pollak, H. (2003). A history of the teaching of modeling. In G. M. A. Stanic, & J. Kilpatrick (Eds.), A History of School Mathematics, Vol. 1 (pp. 647–669). National Council of Teachers of Mathematics.

Quarder, J., Greefrath, G., Gerber, S., & Siller, H. (2025). Pedagogical content knowledge for simulations and mathematical modelling with digital tools: a quasi-experimental study with pre-service mathematics teachers. ZDM – Mathematics Education, 57, 395–409.

Saeki, A., Yata, K., Kaneko, M., & Kawakami, T. (2024). Advancement of in-service teacher’s pedagogical content knowledge when teaching mathematical modelling: Through the interpretation and design of modelling lessons. In S. Siller, V. Geiger, & G. Kaiser (Eds.), Researching Mathematical Modelling Education in Disruptive Times (pp. 353–364). Springer. https://doi.org/10.1007/978-3-031-53322-8_28

Sakaria, D. A., Maat, S. M. B., & Matore, M. E. E. (2023). Factors influencing mathematics teachers’ pedagogical content Knowledge (PCK): A systematic review. Pegem Journal of Education and Instruction, 13(2), 1–14.

https://doi.org/10.47750/pegegog.13.02.01

Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reforms. Harvard Educational Review, 57(1), 1–22.

Sims, S., & Fletcher-Wood, H. (2021). Identifying the characteristics of effective teacher professional development: a critical review. School Effectiveness and School Improvement, 32(1), 47–63.

https://doi.org/10.1080/09243453.2020.1772841

Stohlmann, M., & Albarracin, L. (2016). What is known about elementary grades mathematical modelling. Education Research International, 1–9. https://doi.org/10.1155/2016/5240683

Tan, L. S., & Ang, K. C. (2012). Pedagogical content knowledge in mathematical modelling instruction. In J. Dindyal, L. P. Cheng, & S. F. Ng (Eds.), Mathematics Education: Expanding Horizons: Proceedings of the 35th Annual Conference of the Mathematics Education Research Group of Australasia (pp. 712–719). Mathematics Education Research Group of Australasia.

Turner, E. E., Drake, C., McDuffie, A. R., Aguirre, J., Bartell, T. G., & Foote, M. Q. (2012). Promoting equity in mathematics teacher preparation: A framework for advancing teacher learning of children’s multiple mathematics knowledge bases. Journal of Mathematics Teacher Education, 15(1), 67–82. https://doi.org/10.1007/s10857-011-9196-6.

Venkat, H., & Adler, J. (2020). Pedagogical content knowledge within ”mathematical knowledge for teaching”. In S. Lerman (Ed.), Encyclopedia of mathematics education, 655–658.

https://doi.org/10.1007/978-3-030-15789-0_123

Walker, V. & Bunnell, T. (2024). Becoming a new type of teacher: The case of experienced British-trained teachers transitioning to the International Baccalaureate Middle Years Programme abroad. Journal of Research in International Education, 23(2), 191–204.

https://doi.org/10.1177/14752409241275745

Wei, Y., Zhang, Q., & Guo, J. (2022). Can mathematical modelling be taught and learned in primary mathematics classrooms: A systematic review of empirical studies. Education Sciences, 12(12), 923.

https://doi.org/10.3390/educsci12120923

Wess, R., & Greefrath, G. (2019, February). Professional competencies for teaching mathematical modelling–supporting the modelling-specific task competency of prospective teachers in the teaching laboratory. In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Eleventh Congress of the European Society for Research in Mathematics Education (pp. 1276–1283). Freudenthal Group; Freudenthal Institute; ERME.

Wess, R., Klock, H., Siller, H. S., & Greefrath, G. (2021). Measuring professional competence for the teaching of mathematical modelling: A test instrument (International Perspectives on the Teaching and Learning of Mathematical Modelling). Springer International Publishing. https://doi.org/10.1007/978-3-030-78071-5

Downloads

Published

2025-12-31

How to Cite

Helder, P., & Jakobsen, A. (2025). Investigating in-service Norwegian primary school teachers’ modelling specific pedagogical content knowledge. NOMAD Nordic Studies in Mathematics Education, 30(4), 67–93. https://doi.org/10.7146/nomad.v30i4.164704