Triangle and parallelogram area formulas: a critique of teacher education textbooks in Norway

Authors

  • Eyvind Briseid
  • Henrik Forssell
  • Bjørn Smestad

DOI:

https://doi.org/10.7146/nomad.v30i2.162158

Keywords:

mathematics

Abstract

We survey Norwegian textbooks for preservice teachers, looking for attention to generality in their presentations of diagrammatic proofs for the area formulas for triangles and parallelograms. We find that most textbooks do little to bring issues concerning generality to the attention of the reader in the presented arguments, neither explicitly nor implicitly. We also find that the textbooks fail, as a rule, to present correct proofs of the area formulas for parallelograms and triangles, even given a liberal view of what constitutes a proof. The presented proofs are incorrect in that they are insufficiently general; they fail to cover crucial cases. This is unfortunate, as preservice teachers should be made aware of issues concerning generality in diagrammatic proofs.

References

Aberdein, A. (2013). The parallel structure of mathematical reasoning. In Aberdein, A. & Dove, I. J. (Eds.), The Argument of Mathematics, chapter 18, p. 361–380. Springer. https://doi.org/10.1007/978-94-007-6534-4_18

Balacheff, N. (1988). Aspects of proof in pupils’ practice of school mathematics. In Pimm, D. (Ed.), Mathematics, Teachers and Children, p. 216–235. Hodder and Stoughton.

Barwise, J. & Etchemendy, J. (1996). Visual information and valid reasoning. In Allwine, G. & Barwise, J. (Eds.), Logical Reasoning with Diagrams, p. 3–25. Oxford University Press.

Beck, H. J., Hansen, H. C., Jørgensen, A. & Ørsted Petersen, L. (1998). Matematik i læreruddannelsen, Kultur, kundskap og kompetence, volume 1. Gyldendal.

Bjørnestad, O., Brekke, G., Fjelland, R., Gjone, G., Hole, A., Jahr, E. & Magne, O. (1998). Matematikk 1 for allmennlærerutdanningen, volume 1. Universitetsforlaget.

Bjørnestad, O., Kongelf, T. R. & Myklebust, T. (2013). Alfa (2nd ed.). Fagbokforlaget.

Breiteig, T. & Venheim, R. (1998). Matematikk for lærere 1. Tano Aschehaug.

Bråthe, L. W. T., Tofteberg, G. N., Tangen, J., Stedøy, I. M. & Alseth, B. (2021). Maximum 9 Grunnbok (2nd ed.). Gyldendal.

Christensen, K. G., Johansen, O. E. & Rudberg, B. (1972). Matematikk for lærerutdanning. Aschehoug.

Epstein, R. L. (2013). Mathematics as the art of abstraction. In Aberdein, A. and Dove, I. J. (Eds.), The Argument of Mathematics, chapter 14, p. 257–290. Springer. https://doi.org/10.1007/978-94-007-6534-4_14

Hansen, H. C., Skott, J. & Jess, K. (2007). Matematik for lærerstuderende, Ypsilon. Roskilde Universitetsforlag.

Healy, L. & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics Education, 31(4), 396–428. https://doi.org/10.2307/749651

Hinna, K. R. C., Rinvold, R. A. & Gustavsen, T. S. (2011). QED 5–10, Bind 1. Cappelen Damm.

Hinna, K. R. C., Rinvold, R. A. & Gustavsen, T. S. (2016). QED 1–7, Bind 1. Cappelen Damm.

Hinna, K. R. C., Rinvold, R. A., Gustavsen, T. S. & Sundtjønn, T. (2022). QED 1–7, Bind 1 (2nd ed.). Cappelen Damm.

Hjardar, E. & Pedersen, J.-E. (2020). Matematikk 9 fra Cappelen Damm. Cappelen Damm.

Hole, A. (2006). Grunnleggende matematikk i skoleperspektiv (4th ed.). Universitetsforlaget.

Jensen, O. P. (2004). Grunnleggende matematikk for lærerutdanningen. Matematikkforlaget.

Kempen, L. & Biehler, R. (2015). Pre-service teachers’ perceptions of generic proofs in elementary number theory. In Krainer, K. and Vondrov´a, N. (Eds.), CERME 9 - Ninth Congress of the European Society for Research in Mathematics Education, Proceedings of the Ninth Congress of the European Society for Research in Mathematics Education, p. 135–141, Prague, Czech Republic. Charles University in Prague, Faculty of Education and ERME.

Kirfel, C., Brucker, H.-J. & Herbjørnsen, O. (1999). Matematiske sammen- henger. Caspar.

Knuth, E. J. (2002). Secondary school mathematics teachers' conception of proof. Journal for Research in Mathematics Education, 33(5), 379–405. https://doi.org/10.2307/4149959

Kongsnes, A. L. & Wallace, A. K. (2020). Matemagisk 9. Aschehoug.

Kunnskapsdepartementet (2019). Læreplan i matematikk (mat01-05). https://www.udir.no/lk20/mat01-05. Fastsatt som forskrift. Læreplanverket for Kunnskapsløftet 2020.

Martin, W. G. & Harel, G. (1989). Proof frames of preservice elementary teachers. Journal for Research in Mathematics Education, 20(1), 41–51. https://doi.org/10.2307/749097

Pind, P. (2011). Håndbok i matematikkundervisning. Cappelen Damm. Translated from Danish by H. Kvam and H.M. Mulelid.

Reid, D. & Knipping, C. (2010). Proof in Mathematics Education: Research, Learning and Teaching. Brill – Sense.

Reid, D. & Vargas, E. V. (2018). When is a generic argument a proof? In Stylianides, A. J. & Harel, G. (Eds.), Advances in Mathematics Education Research on Proof and Proving, pages 239–297. Springer. https://doi.org/10.1007/978-3-319-70996-3_17

Solem, I. H., Alseth, B., Eriksen, E. & Smestad, B. (2019). Tall og Tanke 2. Gyldendal.

Solem, I. H., Alseth, B., Eriksen, E. & Smestad, B. (2023). Tall og Tanke 2 (2nd ed.). Gyldendal.

Stylianides, A. J. (2007). Proof and proving in school mathematics. Journal for Research in Mathematics Education, 38(3), 289–321.

Tarski, A. (2014). On the degree of equivalence of polygons. In McFarland, A., MacFarland, J. & Smith, J. T. (Eds.), Alfred Tarski - Early Work in Poland - Geometry and Teaching, chapter 7.2, p. 135–144. Springer. Translated from Polish. https://doi.org/10.1007/978-1-4939-1474-6_7

Van de Walle, J. A., Lovin, L. H., Karp, K. S. & Bay-Williams, J. M. (2017). Teaching Student-Centered Mathematics (3rd ed.). Pearson.

Downloads

Published

2025-06-30

How to Cite

Briseid, E., Forssell, H., & Smestad, B. (2025). Triangle and parallelogram area formulas: a critique of teacher education textbooks in Norway. NOMAD Nordic Studies in Mathematics Education, 30(2), 44–67. https://doi.org/10.7146/nomad.v30i2.162158

Issue

Section

Articles