”Det är riktat till mig, det borde gå att lösa”
Elevgenererade ledtrådar som stödstruktur vid självständig problemlösning
DOI:
https://doi.org/10.7146/nomad.v30i3.160879Keywords:
mathAbstract
Elevgenererade ledtrådar är en potentiellt användbar stödstruktur vid självständig problemlösning, men det är fortfarande oklart hur elever använder och uppfattar sådana ledtrådar. Genom två interventioner med uppföljande enkät och intervjuer undersökte vi därför användande av elevgenererade ledtrådar i sex gymnasieklasser. Vi fann att eleverna använde ledtrådarna för att 1) starta upp lösningsförsök, 2) hantera svårigheter och motgångar, samt 3) utvärdera lösningsförsök. Utöver ledtrådarnas innehåll var relationen mellan avsändare och mottagare avgörande för hur användbara ledtrådarna upplevdes. Att ledtrådarna var skrivna av jämlikar snarare än lärare eller läroboksförfattare verkade för eleverna kommunicera både att de borde kunna förstå ledtrådarna och att uppgiften de arbetade med var överkomlig för en person på deras ungefärliga kunskapsnivå. Resultatet belyser affektiva och relationella dimensioner av ledtrådar och elevers mottagande av dessa som förbisetts i tidigare ledtrådsforskning.
References
Alegre, F., Moliner, L., Maroto, A., & Lorenzo-Valentin, G. (2019). Peer tutoring in mathematics in primary education: A systematic review. Educational Review, 71(6), 767-791. https://doi.org/10.1080/00131911.2018.1474176
Bikmaz, F. H., Çeleb, Ö., Aslıhan, A. T. A., Eren, Ö. Z. E. R., Soyak, Ö., & Reçber, H. (2010). Scaffolding strategies applied by student teachers to teach mathematics. The International Journal of Research in Teacher Education, 1(3), 25-36.
Bowen, G. A. (2006). Grounded theory and sensitizing concepts. International Journal of Qualitative Methods, 5(3), 12-23. https://doi.org/10.1177/160940690600500304
Crouch, C. H., & Mazur, E. (2001). Peer instruction: Ten years of experience and results. American Journal of Physics, 69(9), 970-977. https://doi.org/10.1119/1.1374249
Engelbrecht, J., & Harding, A. (2005). Teaching undergraduate mathematics on the internet. Educational Studies in Mathematics, 58, 253-276. https://doi.org/10.1007/s10649-005-6457-2
Franke, M. L., Kazemi, E., & Battey, D. (2007). Mathematics teaching and classroom practice. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 225–256). Information age publishing.
Glassman, E. L., Lin, A., Cai, C. J., & Miller, R. C. (2016). Learnersourcing personalized hints. In Proceedings of the 19th ACM conference on computer-supported cooperative work & social computing (pp. 1626-1636). Association for Computing Machinery. https://doi.org/10.1145/2818048.2820011
Grothérus, A., Jeppsson, F., & Samuelsson, J. (2019). Formative Scaffolding: how to alter the level and strength of self-efficacy and foster self-regulation in a mathematics test situation. Educational Action Research, 27(5), 667-690. https://doi.org/10.1080/09650792.2018.1538893
Intaros, P., Inprasitha, M., & Srisawadi, N. (2014). Students’ problem solving strategies in problem solving-mathematics classroom. Procedia-Social and Behavioral Sciences, 116, 4119-4123. https://doi.org/10.1016/j.sbspro.2014.01.901
Jones, I., & Alcock, L. (2014). Peer assessment without assessment criteria. Studies in Higher Education, 39(10), 1774-1787. https://doi.org/10.1080/03075079.2013.821974
Kani, N. H. A., & Shahrill, M. (2015). Applying the thinking aloud pair problem solving strategy in mathematics lessons. Asian Journal of Management Sciences and Education, 4(2), 20-28.
Kaya, S., Kablan, Z., & Rice, D. (2014). Examining question type and the timing of IRE pattern in elementary science classrooms. Journal of Human Sciences, 11(1), 621-641. https://doi.org/10.14687/ijhs.v11i1.2730
Kirschner, P., Sweller, J., & Clark, R. E. (2006). Why unguided learning does not work: An analysis of the failure of discovery learning, problem-based learning, experiential learning and inquiry-based learning. Educational Psychologist, 41(2), 75-86. https://doi.org/10.1207/s15326985ep4102_1
Khosravi, H., Denny, P., Moore, S., & Stamper, J. (2023). Learnersourcing in the age of AI: Student, educator and machine partnerships for content creation. Computers and Education: Artificial Intelligence, 5, 1-20. https://doi.org/10.1016/j.caeai.2023.100151
Läroplan för grundskolan, förskoleklassen och fritidshemmet. (2022). Skolverket.
Läroplan för gymnasiet. (2011). Skolverket.
Mahharrini, E. P., Ansari, B. I., & Yani, B. (2020). In-service teachers’ scaffolding in teaching and learning mathematics. Journal of Physics: Conference Series, 1460(1), 1-9. https://doi:10.1088/1742-6596/1460/1/012039
Moss, J., & Beatty, R. (2006). Knowledge building in mathematics: Supporting collaborative learning in pattern problems. International Journal of Computer-Supported Collaborative Learning, 1, 441-465. https://doi.org/10.1007/s11412-006-9003-z
Othman, H., Asshaari, I., Bahaludin, H., Tawil, N. M., & Ismail, N. A. (2012). Student's perceptions on benefits gained from cooperative learning experiences in engineering mathematics courses. Procedia-Social and Behavioral Sciences, 60, 500-506. https://doi.org/10.1016/j.sbspro.2012.09.414
Penuel, W. R., & Fishman, B. J. (2012). Large?scale science education intervention research we can use. Journal of Research in Science Teaching, 49(3), 281-304. https://doi.org/10.1002/tea.21001
Perrenet, J., & Groen, W. (1993). A hint is not always a help. Educational Studies in Mathematics, 25(4), 307-329. https://doi.org/10.1007/BF01273904
Pfister, M., Moser Opitz, E., & Pauli, C. (2015). Scaffolding for mathematics teaching in inclusive primary classrooms: A video study. ZDM – Mathematics Education, 47, 1079-1092. https://doi.org/10.1007/s11858-015-0713-4
Razzaq, L., & Heffernan, N. T. (2010). Hints: is it better to give or wait to be asked?. In Aleven, V., Kay, J & Mostow, J. (Eds) Proceedings of the 10th international conference on intelligent tutoring systems (ITS2010) Part 1 (pp. 349-358). Springer. https://doi.org/10.1007/978-3-642-13388-6_39
Roehler, R. L. & Cantlon, D. C. (1997). Scaffolding: A powerful tool in social constructivist
classrooms. In K. Hogan, & M. Pressley (Eds.), Scaffolding Student Learning: Instructional
Approaches and Issues (pp. 6-42). Brookline Books.
Sengupta-Irving, T., & Agarwal, P. (2017). Conceptualizing perseverance in problem solving as collective enterprise. Mathematical Thinking and Learning, 19(2), 115-138. https://doi.org/10.1080/10986065.2017.1295417
Singh, A., Brooks, C., Wang, X., Li, W., Kim, J., & Wilson, D. (2024). Bridging Learnersourcing and AI: Exploring the Dynamics of Student-AI Collaborative Feedback Generation. In Proceedings of the 14th Learning Analytics and Knowledge Conference (pp. 742-748). Association for Computing Machinery. https://doi.org/10.1145/3636555.3636853
Spitzer, M. W. H., & Musslick, S. (2021). Academic performance of K-12 students in an online-learning environment for mathematics increased during the shutdown of schools in wake of the COVID-19 pandemic. PloS one, 16(8), 1-16. https://doi.org/10.1371/journal.pone.0255629
Tenenbaum, H. R., Winstone, N. E., Leman, P. J., & Avery, R. E. (2020). How effective is peer interaction in facilitating learning? A meta-analysis. Journal of Educational Psychology, 112(7), 1303-1319. https://doi.org/10.1037/edu0000436
Tullis, J. G., & Feder, B. (2023). The “curse of knowledge” when predicting others’ knowledge. Memory & Cognition, 51(5), 1214-1234. https://doi.org/10.3758/s13421-022-01382-3
Van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher–student interaction: A decade of research. Educational Psychology Review, 22, 271-296. https://doi.org/10.1007/s10648-010-9127-6
Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89-100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.