Mathematical modelling in textbook tasks and national examination in Norwegian upper secondary school
Abstract
Modelling competence is defined as the ability to carry through all steps of a mathematical modelling process, to solve a non-mathematical problem by mathematics. In this study, Norwegian textbook modelling tasks and tasks from the national exam are analyzed through the lens of a modelling cycle. The findings discussed as the enacted curriculum (textbook tasks) and assessed curriculum (exam tasks) are seen in relation to the intended curriculum. The results show different starting points of the modelling process in the intended curriculum and the tasks from textbooks and exam. The findings indicate different perspectives on mathematical modelling in the curriculum (modelling for developing modelling competence) and the textbook tasks and the national exam, where only parts of the modelling process are included.
References
Barbosa, J. C. (2006). Mathematical modelling in classroom: a socio-critical and discursive perspective. ZDM, 38 (3), 293-301. https://doi.org/10.1007/BF02652812
Berget, I. K. L. & Bolstad, O. H. (2019). Perspektiv på matematisk modellering i Kunnskapsløftet og Fagfornyinga. Nordisk tidsskrift for utdanning og praksis, 13 (1), 83-97. https://doi.org/10.23865/up.v13.1882
Blomhøj, M. & Højgaard Jensen, T. (2003). Developing mathematical modelling competence: conceptual clarification and educational planning. Teaching mathematics and its applications, 22 (3), 123-139. https://doi.org/10.1093/teamat/22.3.123
Blomhøj, M. & Ärlebäck, J. B. (2018). Theory-practice relations in research on applications and modelling. In T. Dreyfus, M. Artigue, D. Potari, S. Prediger & K. Ruthven (Eds.), Developing research in mathematics education - twenty years of communication, cooperation and collaboration in Europe (pp. 90-105). Routledge. https://doi.org/10.4324/9781315113562-8
Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, what can we do? In S. J. Cho (Ed.), The Proceedings of ICME 12 (pp. 73-96). Springer. https://doi.org/10.1007/978-3-319-12688-3_9
Blum, W. & Ferri, R. B. (2009). Mathematical modelling: Can it be taught and learnt? Journal of mathematical modelling and application, 1 (1), 45-58.
Blum, W. & Leiβ, D. (2007). How do students and teachers deal with modelling problems? In C. Haines, P. Galbraith, W. Blum & S. Khan (Eds.), Mathematical modelling: education, engineering and economics - ICTMA 12 (pp. 222-231). Horwood. https://doi.org/10.1533/9780857099419.5.221
Boaler, J. (2001). Mathematical modelling and new theories of learning. Teaching Mathematics and Its Applications, 20 (3), 121-128. https://doi.org/10.1093/teamat/20.3.121
Borromeo Ferri, R. (2010). On the influence of mathematical thinking styles on learners' modeling behavior. Journal für Mathematik-Didaktik, 31 (1), 99-118. https://doi.org/10.1007/s13138-010-0009-8
Borromeo Ferri, R. (2018). Learning how to teach mathematical modeling in school and teacher education. Springer. https://doi.org/10.1007/978-3-319-68072-9
Bracke, M. & Geiger, A. (2011). Real-world modelling in regular lessons: a long- term experiment. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 529- 549). Springer. https://doi.org/10.1007/978-94-007-0910-2_52
Brown, J. P. & Stillman, G. A. (2017). Developing the roots of modelling conceptions: "mathematical modelling is the life of the world". Journal of mathematical education in science and technology, 48 (3), 353-373. https://doi.org/10.1080/0020739X.2016.1245875
Burkhardt, H. (2006). Modelling in mathematics classrooms: reflections on past developments and the future. ZDM, 38 (2), 178-195. https://doi.org/10.1007/BF02655888
Czocher, J. A. (2016). Introducing modeling transition diagrams as a tool to connect mathematical modeling to mathematical thinking. Mathematical thinking and learning, 18 (2), 77-106. https://doi.org/10.1080/10986065.2016.1148530
Frejd, P. (2011). An investigation of mathematical modelling in the swedish national course tests in mathematics. In M. Pytlak, T. Rowland & E. Swoboda (Eds.), Proceedings of CERME 7 (pp. 947-256). University of Rzeszów & ERME.
Frejd, P. (2012). Teachers' conceptions of mathematical modelling at Swedish upper secondary school. Journal of Mathematical Modelling and Application, 1 (5), 17-40.
Freudenthal, H. (1991). Revisiting mathematics education. Kluwer Academic.
Galbraith, P. (2012). Models of modelling: genres, purposes or perspectives. Journal of mathematical modelling and application, 5 (13), 3-16.
Greefrath, G. & Vorhölter, K. (2016). Teaching and learning mathematical modelling: approaches and developments from German speaking countries. Springer. https://doi.org/10.1007/978-3-319-45004-9_1
Grevholm, B. (2017). Mathematics textbooks, their content, use and influences. Cappelen Damm.
Hankeln, C. (2020). Mathematical modeling in Germany and France: a comparison of students' modeling processes. Educational Studies in Mathematics, 103 (2), 209-229. https://doi.org/10.1007/s10649-019-09931-5
Hankeln, C., Adamek, C. & Greefrath, G. (2019). Assessing sub-competencies of mathematical modelling-development of a new test instrument. In G. A. Stillman & J. P. Brown (Eds.), Lines of inquiry in mathematical modelling research in education (pp. 143-160). Springer. https://doi.org/10.1007/978-3-030-14931-4_8
Heir, O., Engeseth, J., Moe, H. & Borgan, Ø. (2014). Matematikk 2P. H. Aschehoug & Co.
Heuvel-Panhuizen, M. van den (2003). The didactical use of models in realistic mathematics education: an example from a longitudinal trajectory on percentage. Educational Studies in Mathematics, 54, 9-35. https://doi.org/10.1023/B:EDUC.0000005212.03219.dc
Højgaard, T. (2009). Modellering versus problemløsning: om kompetencebeskrivelser som kommunikationsværktøj. MONA, 2, 37-54.
Jablonka, E. & Gellert, U. (2010). Ideological roots and uncontrolled flowering of alternative curriculum conceptions. In U. Gellert, E. Jablonka & C. Morgan (Eds.), Proceedings of the sixth international mathematics education and society conference (pp. 31-49). Freie Universität Berlin
Julie, C. (2002). Making relevance relevant in mathematics teacher education. In I. Vakalis, D. Hughes-Hallett, C. Kourouniotis, D. Quinney & C. Tzanakis (Eds.), Proceedings of 2nd international conference on the teaching of mathematics. Wiley.
Kaiser, G. & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM, 38 (3), 302-310. https://doi.org/10.1007/BF02652813
Lesh, R., Cramer, K., Doerr, H. M., Post, T. & Zawojewski, J. S. (2003). Model development sequences. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism: models and modeling perspectives on mathematics problem solving, learning and teaching (pp. 35-58). Lewrence Erlbaum. https://doi.org/10.4324/9781410607713
Ministry of Church Education and Research (1994). Læreplan i matematikk, reform'94 (R94).
Ministry of Education and Research (2013). Mathematics 2P subject curriculum (MAT5-03). https://www.udir.no/kl06/MAT5-03?lplang=http://data.udir.no/ kl06/eng
Momsen, J., Offerdahl, E., Kryjevskaia, M., Montplaisir, L., Anderson, E. & Grosz, N. (2013). Using assessments to investigate and compare the nature of learning in undergraduate science courses. CBE life sciences education, 12 (2), 239-249. https://doi.org/10.1187/cbe.12-08-0130
Niss, M. (1993). Assessment in mathematics education and its effects: An introduction. In Investigations into assessment in mathematics education (pp. 1-30): Springer. https://doi.org/10.1007/978-94-017-1974-2_1
Niss, M. (2015). Mathematical competencies and PISA. In K. Stacey & R. Turner (Eds.), Assessing mathematical literacy, the PISA experience (pp. 35-56). Springer. https://doi.org/10.1007/978-3-319-10121-7_2
Niss, M. & Blum, W. (2020). The learning and teaching of mathematical modelling. Routledge. https://doi.org/10.4324/9781315189314
Niss, M., Blum, W. & Galbraith, P. (2007). Introduction. In P. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 3-32). Springer. https://doi.org/10.1007/978-0-387-29822-1_1
Niss, M. & Jensen, T. H. (2002). Kompetencer og matematiklæring. Undervisningsministeriets forlag.
Nortvedt, G. A. (2013). Matematikk i PISA - matematikkdidaktiske perspektiver. In M. Kjærnsli & R. V. Olsen (Eds.), Fortsatt en vei å gå (pp. 43-62). Universitetsforlaget.
OECD (2018). PISA 2021 mathematics framework (draft). https://pisa2021-maths.oecd.org/files/PISA%202021%20Mathematics%20Framework%20Draft.pdf
Oldervoll, T., Orskaug, O., Vaaje, A., Svorstøl, O. & Hals, S. (2014). Sinus matematikk 2P. Cappelen Damm.
Pollak, H. (1979). The interaction between mathematics and other school subjects. In UNESCO (Ed.), New trends in mathematics teaching IV (pp. 232- 248). Paris. https://doi.org/10.1111/j.1949-8594.1978.tb09351.x
Porter, A. C. (2006). Curriculum assessment. In J. Green, J. L. Green, G. Camili, P. Elmore & P. B. Elmore (Eds.), Handbook of complementary methods in education research (pp. 141-159). Routledge.
Schukajlow, S., Kaiser, G. & Stillman, G. (2018). Empirical research on teaching and learning of mathematical modelling: a survey on the current state-of- the-art. ZDM, 50 (1), 5-18. https://doi.org/10.1007/s11858-018-0933-5
Stillman, G., Brown, J., Galbraith, P. & Ng, K. E. D. (2016). Research into mathematical applications and modelling. In K. Makar, S. Dole, J. Visnovska, M. Goos, A. Bennison, & K.Fry (Eds.), Research in mathematics education i Australasia 2012-2015 (pp. 281-304). Springer. https://doi.org/10.1007/978-981-10-1419-2_14
Stillman, G. A. (2015). Applications and modelling research in secondary classrooms: What have we learnt? In S. J. Cho (Ed.), Selected regular lectures from the ICME 12 (pp. 791-805). Springer International. https://doi.org/10.1007/978-3-319-17187-6_44
The Norwegian Directorate for Education and Training (2019). Læreplan i matematikk 1.-10. trinn. Ministry of Education and Research. https://data.udir.no/kl06/v201906/laereplaner-lk20/MAT01-05.pdf
Trouche, L. (2016). Didactics of mathematics: concepts, roots, interactions and dynamics from France. In J. Monaghan, L. Trouche & J. Borwein (Eds.), Tools and mathematics (pp. 219-256). Springer International. https://doi.org/10.1007/978-3-319-02396-0_10
Urhan, S. & Dost, S. (2018). Analysis of ninth grade mathematics course book activities based on model-eliciting principles. International journal of science and mathematics education, 16 (5), 985-1002. https://doi.org/10.1007/s10763-017-9808-4
Vos, P. (2007). Assessment of applied mathematics and modelling: using a laboratory-like environment. In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 441- 448). Springer. https://doi.org/10.1007/978-0-387-29822-1_49
Vos, P. (2018). "How real people really need mathematics in the real world" - autenticity in mathematics education. Education sciences, 8 (4), 195. https://doi.org/10.3390/educsci8040195
Øgrim, S., Bakken, T., Pettersen, B., Skrindo, K., Dypbukt, W. et al. (2013). Sigma matematikk 2P. Gyldendal Undervising.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.