Guidelines for utilizing affordances of dynamic geometry environments to support development of reasoning competency
Abstract
This article reports on guidelines developed based on an extensive research literature review investigating the potentials of dynamic geometry environments (DGEs) when the educational aim is to support students’ development of mathematical reasoning competency. Four types of potentials were identified – feedback, dragging, measuring, and tracing – and used in three dimensions of guidelines: students’ cognition, task design, and the role of the teacher. Using constructs from the Instrumental approach, the Theory of semiotic mediation, and the van Hiele model of levels, affordances and guidelines are elaborated upon and their potentials for reasoning competency are analyzed.
References
Alqahtani, M. & Powell, B. (2015) Teachers' support of students' instrumen- tation in a collaborative, dynamic geometry environment. In Amado, N. & Carreira, S. (Eds.), Proceedings of the 12th International Conference on Technology in Mathematics Teaching (pp. 268-276). University of Algarve.
Artigue, M. (2002). Learning mathematics in a CAS environment: the genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7 (3), 245-274. https://doi.org/10.1023/A:1022103903080
Arzarello, F., Olivero, F., Paola, D. & Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. ZDM, 34, 66-72. https://doi.org/10.1007/BF02655708
Baccaglini-Frank, A., Antonini, S., Leung, A. & Mariotti, M. A. (2013). Reasoning by contradiction in dynamic geometry. PNA, Revista de Investigaciòn en Didàctica de la Matemàtica, 7 (2), 63-73. https://doi.org/10.30827/pna.v7i2.6129
Baccaglini-Frank, A., Antonini, S., Leung, A. & Mariotti, M. A. (2017). Designing non-constructability tasks in a dynamic geometry environment. In A. Leung & A. Baccaglini-Frank (Eds.), Digital technologies in designing mathematics education tasks: potential and pitfalls (pp. 99-120). Springer. https://doi.org/10.1007/978-3-319-43423-0_6
Baccaglini-Frank, A., Antonini, S., Leung, A. & Mariotti M. A. (2018). From pseudo objects in dynamic explorations to proof by contradiction. Digital Experiences in Mathematics Education, 4, 87-109. https://doi.org/10.1007/s40751-018-0039-2
Baccaglini-Frank, A. & Mariotti, M. A. (2010). Generating conjectures in Dynamic Geometry: the maintaining-dragging model. International Journal of Computers for Mathematical Learning, 15 (3), 225-253. https://doi.org/10.1007/s10758-010-9169-3
Balacheff, N. & Kaput, J. J. (1997). Computer based learning environments in mathematics. In Bishop A. (Ed.), International handbook in mathematics education (pp. 469-501). Kluwer Academic. https://doi.org/10.1007/978-94-009-1465-0_15
Bartolini Bussi, M. G. & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: artifacts and signs after a Vygotskian perspective. In L. English, M. Bartolini Bussi, G. Jones, R. Lesh & D. Tirosh (Eds.), Handbook of international research in mathematics education (second revised edition). Lawrence Erlbaum.
Boell, S. K. & Cecez-Kecmanovic, D. (2010) Literature reviews and the hermeneutic circle. Australian Academic & Research Libraries, 41 (2), 129-144. https://doi.org/10.1080/00048623.2010.10721450
Boell, S. K. & Cecez-Kecmanovic, D. (2014). A hermeneutic approach for conducting literature reviews and literature searches. Communications of the Association for Information Systems, 34 (1), 257-286. https://doi.org/10.17705/1CAIS.03412
Bretscher, N. (2009) Dynamic geometry software: the teacher's role in facilitating instrumental genesis. Research in Mathematics Education, 11 (2), 187-188. https://doi.org/10.1080/14794800903063398
Burger, W. F. & Shaugnessy, J. M. (1986). Characterizing the van Hiele levels of development in geometry. Journal for Research in Mathematics Education, 17 (1), 31-48. https://doi.org/10.2307/749317
Connor, J., Moss, L. & Grover, B. (2007). Student evaluation of mathematical statements using dynamic geometry software. International Journal of Mathematical Education in Science and Technology, 38 (1), 55-63. https://doi.org/10.1080/00207390600967380
De Villiers, M. (2004). Using dynamic geometry to expand mathematics teachers' understanding of proof. International Journal of Mathematical Education in Science and Technology, 35 (5), 703-724. https://doi.org/10.1080/0020739042000232556
De Villiers, M. (2007). Proof in dynamic geometry: more than verification. In D. K. Pugalee, A. Rogerson & A. Schinck (Eds.), Proceedings of the Ninth International Conference in Mathematics Education in a Global Community (pp. 155-159). University of North Carolina.
Drijvers, P., Godino, J.D., Font, V. & Trouche, L. (2013). One episode, two lenses - a reflective analysis of student learning with computer algebra from instrumental and onto-semiotic perspectives. Educational Studies in Mathematics, 82 (1), 23-49. https://doi.org/10.1007/s10649-012-9416-8
Edwards, M. T., Harper, S. R., Cox, D. C., Quinlan, J. & Phelps, S. (2014) Cultivating deductive thinking with angle chasing. The mathematics Teacher, 107 (6), 426-431. https://doi.org/10.5951/mathteacher.107.6.0426
Fahlgren, M. & Brunström, M. (2014). A model for task design with focus on exploration, explanation, and generalization in a dynamic geometry environment. Technology, Knowledge and Learning, 19 (3), 287-315. https://doi.org/10.1007/s10758-014-9213-9
Falcade, R., Laborde, C. & Mariotti, M. (2007). Approaching functions: Cabri tools as instruments of semiotic mediation. Educational Studies in Mathematics, 66, 317-333. https://doi.org/10.1007/s10649-006-9072-y
Forsythe, S. K. (2015). Dragging maintaining symmetry: Can it generate the concept of inclusivity as well as a family of shapes? Research in Mathematics Education, 17 (3), 198-219. https://doi.org/10.1080/14794802.2015.1065757
Gómez-Chacón, I. (2012) Affective pathways and interactive visualization in the context of technological and professional mathematical knowledge. Nordic Studies in Mathematics Education, 17 (3-4), 57-74.
Gómez-Chacón, I. M., Romero Albaladejo, I. M. & del Mar García López, M. (2016). Zig-zagging in geometrical reasoning in technological collaborative environments: a mathematical working space-framed study concerning cognition and affect. ZDM, 48 (6), 909-924. https://doi.org/10.1007/s11858-016-0755-2
Guin, D. & Trouche, L. (1999). The complex process of converting tools into mathematical instruments: the case of calculators. International Journal of Computers for Mathematical Learning, 3, 195-227. https://doi.org/10.1023/A:1009892720043
Guven, B., Cekmez, E. & Karatas, I. (2010). Using empirical evidence in the process of proving: the case of dynamic geometry. Teaching Mathematics and Its Application, 29, 193-207. https://doi.org/10.1093/teamat/hrq010
Hadas, N., Hershkowitz, R. & Schwarz, B. B. (2000). The role of contradiction and uncertainty in promoting the need to prove in dynamic geometry environments. Educational Studies in Mathematics, 44 (1), 127-150. https://doi.org/10.1023/A:1012781005718
Healy, L. (2000). Identifying and explaining geometric relationship: interactions with robust and soft Cabri constructions. In T. Nakahara & M. Koyama (Eds.), Proceedings of PME24 (Vol. 1, pp. 103-117). University of Hiroshima.
Hegedus, S. & Moreno-Armella, L. (2010). Acommodating the instrumental genesis framework within dynamic technological environments. For the Learning of Mathematics, 30 (1), 26-31.
Hiele, P. M. van (1986). Structure and insight. A theory of mathematics education. Academic press.
Hollebrands, K., Laborde, C. & Sträßer, R. (2008). Technology and the learning of geometry at the secondary level. In M. K. Heid & G. H. Blume (Eds.), Research on technology and the teaching and learning of mathematics: Vol. 1. Research syntheses (pp. 155-206). Information Age.
Hölzl, R., Healy, L., Hoyles, C. & Noss, R. (1994). Geometrical relationships and dependencies in Cabri. Micromath, 10 (3), 8-11.
Hölzl, R. (2001). Using dynamic geometry software to add contrast to geometric situations - a case study. International Journal of Computers for Mathematical Learning, 6 (1), 63-86. https://doi.org/10.1023/A:1011464425023
Hoyles, C. & Healy, L. (2007) Curriculum change and geometrical reasoning. In Boero, P. (Ed.), Theorems in school: from history, epistemology and cognition to classroom practice (pp. 81-115). Sense. https://doi.org/10.1163/9789087901691_007
Idris, N. (2009). The impact of using Geometer's Sketchpad on Malaysian students'achievement and Van Hiele geometric thinking. Journal of Mathematics Education, 2 (2), 94-107
Jessen, B. E., Holm, C. & Winsløw, C. (2015). Matematikudredningen - udredning af den gymnasiale matematiks rolle og udviklingsbehov. Institut for Naturfagenes Didaktik, Københavns Universitet.
Jones, K. (2000). Providing a foundation for deductive reasoning: students' interpretations when using dynamic geometry software and their evolving mathematical explanations. Educational Studies in Mathematics, 44 (1-2), 55-85. https://doi.org/10.1023/A:1012789201736
Jones, K. (2005). Research on the use of dynamic geometry software: implications for the classroom. In J. Edwards & D. Wright (Eds.), Integrating ICT into the mathematics classroom (pp. 27-29). Association of Teachers of Mathematics.
Kaur, H. (2015). Two aspects of young children's thinking about different types of dynamic triangles: prototypicality and inclusion. ZDM, 47 (3), 407- 420. https://doi.org/10.1007/s11858-014-0658-z
Komatsu, K. & Jones, K. (2018). Task design principles for heuristic refutation in dynamic geometry environments. International Journal of Science and Mathematics Education, 17, 801-824. https://doi.org/10.1007/s10763-018-9892-0
Laborde, C. (2000). Dynamic geometry environments as a source of rich learning contexts for the complexactivity of proving. Educational Studies in Mathematics, 44 (1-3), 151-161. https://doi.org/10.1023/A:1012793121648
Laborde, C. (2001). Integration of technology in the design of geometry tasks with cabri-geometry. International Journal of Computers for Mathematical Learning, 6, 283-317. https://doi.org/10.1023/A:1013309728825
Laborde, C. (2005a). Robust and soft constructions: two sides of the use of dynamic geometry environments. In S. C. Chu, H.C. Lew, W. C. Yang & H. K. Taehakkyo (Eds.), Proceedings of the 10th Asian Technology Conference in Mathematics (pp. 22-35). Korea National University of Education.
Laborde, C. (2005b). The hidden role of diagrams in students' construction of meaning in geometry. In J. Kilpatrick, C. Hoyles, O. Skovsmose & P. Valero (Eds.), Meaning in mathematics education (Mathematics education library, vol 37). Springer. https://doi.org/10.1007/0-387-24040-3_11
Laborde, C., Kynigos, C., Hollebrands, K. & Sträßer, R. (2006). Teaching and learning geometry with technology. In A. Gutierrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: past, present and future (pp. 275-304). Sense. https://doi.org/10.1163/9789087901127_011
Lachmy, R. & Koichu, B. (2014). The interplay of empirical and deductive reasoning in proving "if" and "only if" statements in a dynamic geometry environment. The Journal of Mathematical Behavior, 36, 150-165. https://doi.org/10.1016/j.jmathb.2014.07.002
Leung, A., Chan, Y. & Lopez-Real, F. (2006). Instrumental genesis in dynamic geometry environments. In C. Hoyles, J.-B. Lagrange, L. H. Son & N. Sinclair (Eds.), Proceedings of the Seventeenth Study Conference of the International Commission on Mathematical Instruction (pp. 346-353). Hanoi Institute of Technology and Didirem Université Paris 7.
Leung, A. (2011). An epistemic model of task design in dynamic geometry environment. ZDM, 43 (3), 325-336. https://doi.org/10.1007/s11858-011-0329-2
Leung, A., Baccaglini-Frank, A. & Mariotti, M.A. (2013) Discernment of invariants in dynamic geometry environments. Educational Studies in Mathematics, 84 (3), 439-460. https://doi.org/10.1007/s10649-013-9492-4
Leung, A. (2015). Discernment and reasoning in dynamic geometry environments. In S. Cho (Ed.), Selected regular lectures from the 12th International Congress on Mathematical Education (pp. 451-469). Springer. https://doi.org/10.1007/978-3-319-17187-6_26
Lin, F.L., Yang, K.L., Lee, K.H., Tabach, M. & Stylianides, G. (2012). Principles of task design for conjecturing and proving. In G. Hanna & M. de Villiers (Eds.), Proof and proving in mathematics education (new ICMI study series 15) (pp. 305-325). Springer. https://doi.org/10.1007/978-94-007-2129-6_13
Mariotti, M. A. (2006). New artefacts and the mediation of mathematical meanings. In C. Hoyles, J. B. Lagrange, L. H. Son & N. Sinclair (Eds.), Proceedings of the Seventeenth Study Conference of the International Commission on Mathematical Instruction (pp. 378-385). Hanoi Institute of Technology and Didirem Université Paris 7.
Mariotti, M. A. (2012). Proof and proving in the classroom: dynamic geometry systems as tools of semiotic mediation. Research in Mathematics Education, 14 (2), 163-185. https://doi.org/10.1080/14794802.2012.694282
Marrades, R. & Gutiérrez, Á. (2000). Proofs produced by secondary school students learning geometry in a dynamic computer environment. Educational Studies in Mathematics, 44, 87-125. https://doi.org/10.1023/A:1012785106627
Ng, O.-L. & Sinclair, N. (2015). "Area without numbers": using touchscreen dynamic geometry to reason about shape. Canadian Journal of Science, Mathematics and Technology Education, 15 (1), 84-101. https://doi.org/10.1080/14926156.2014.993048
Niss, M., Bruder, R., Planas, N., Turner, R. & Villa-Ochoa, J. A. (2016). Survey team on: conceptualisation of the role of competencies, knowing and knowledge in mathematics education research. ZDM, 48, 611-632. https://doi.org/10.1007/s11858-016-0799-3
Niss, M. & Højgaard, T. (2019) Mathematical competencies revisited. Educational Studies in Mathematics, 102 (1), 9-28. https://doi.org/10.1007/s10649-019-09903-9
Niss, M. & Højgaard, T. (2011). Competencies and mathematical learning ideas and inspiration for the development of mathematics teaching and learning in Denmark (IMFUFA tekst no. 485). Roskilde University. (Published in Danish in 2002)
Niss, M. & Jensen, T. H. (Eds.) (2002). Kompetencer og matematiklæring - Ideer og inspiration til udvikling af matematikundervisning i Danmark (Uddannelsesstyrelsens temahæfteserie 18). The Ministry of Education.
OECD (2017). PISA 2015 mathematics framework. In PISA 2015 assessment and analytical framework: science, reading, mathematic, financial literacy and collaborative problem solving (pp. 65-80). OECD Publishing. https://doi.org/10.1787/9789264281820-5-en
Olive J., Makar K., Hoyos V., Kor, L. K., Kosheleva O. & Sträßer R. (2009) Mathematical knowledge and practices resulting from access to digital technologies. In Hoyles C. & J. B. Lagrange (Eds.), Mathematics education and technology-rethinking the terrain (pp. 133-177). Springer. https://doi.org/10.1007/978-1-4419-0146-0_8
Olivero, F. (2002). The proving process within a dynamic geometry environment (PhD thesis). Graduate School of Education, University of Bristol.
Olivero, F. & Robutti, O. (2007). Measuring in dynamic geometry environments as a tool for conjecturing and proving. International Journal of Computers for Mathematical Learning, 12 (2), 135-156. https://doi.org/10.1007/s10758-007-9115-1
Olsson, J. (2017). GeoGebra, enhancing creative mathematical reasoning (Doctoral thesis). Umeå University.
Papademetri-Kachrimani, C. (2012). Revisiting van Hiele. For the Learning of Mathematics, 32 (3), 2-7.
Ruthven, K., Hennessy, S. & Deaney, R. (2005). Current practice in using dynamic geometry to teach about angle properties. In D. Wright (Ed.), Moving on with dynamic geometry (pp. 128-137). Association of Mathematics Teachers.
Sinclair, M. P. (2003). Some implications of the results of a case study for the design of pre-constructed, dynamic geometry sketches and accompanying materials. Educational Studies in Mathematics, 52 (3), 289-317. https://doi.org/10.1023/A:1024305603330
Sinclair, N., Bartolini-Bussi, M. G., Villiers, M. de, Jones, K., Kortenkamp, U. et al. (2016). Recent research on geometry education: an ICME-13 survey team report. The International Journal on Mathematics Education, 48 (5), 691-719. https://doi.org/10.1007/s11858-016-0796-6
Sinclair, N. & Robutti, O. (2013). Technology and the role of proof: the case of dynamic geometry. In M.Clements, A. Bishop, C. Keitel-Kreidt, J. Kilpatrick & F. Leung (Eds.), Third international handbook of mathematics education (pp. 571-596). Springer. https://doi.org/10.1007/978-1-4614-4684-2_19
Trocki, A. (2014). Evaluating and writing dynamic geometry tasks. The Mathe- matics Teacher, 107 (9), 701-705. https://doi.org/10.5951/mathteacher.107.9.0701
Trocki, A. & Hollebrands, K. (2018). The development of a framework for assessing dynamic geometry task quality. Digital Experiences in Mathematics Education, 4, 110-138. https://doi.org/10.1007/s40751-018-0041-8
Vergnaud, G. (2009). The theory of conceptual fields. Human Development, 52, 83-94. https://doi.org/10.1159/000202727
Vérillon, P. & Rabardel, P. (1995). Cognition and artifacts: a contribution to the study of thought in relation to instrumented activity. European Journal of Psychology in Education, 9 (3), 77-101. https://doi.org/10.1007/BF03172796
Vygotskij, L. S. (1978/1934). Mind in society. The development of higher psychological processes. Harvard University Press.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.