Investigating the fit of a model for students’ understanding of fractions in a Norwegian context

Authors

  • Trond Stølen Gustavsen
  • Olav Gravir Imenes

DOI:

https://doi.org/10.7146/nomad.v24i2.149017

Abstract

To capture the complexity of students’ understanding of fractions, a model linking part-whole to the subconstructs ratio, operator, quotient and measure has been proposed. We ask if this model is compatible with students’ achievements in a Norwegian context. Responses from 638 students were analysed using structural equation modelling (SEM), and a good fit of the model was obtained after removing the ratio subconstruct. In particular, part-whole is seen to be important for operator, quotient and measure. Using qualitative analysis of interviews, we found reasoning associated with ratio, with a weak link to the part-whole subconstruct.

References

Alseth, B., Nordberg, G. & Røsseland, M. (2006). Multi - lærerens bok (1-7). Oslo: Gyldendal.

Bakke, B. & Bakke, I. N. (2006). Grunntall (1-10). Drammen: Elektronisk undervisningsforlag.

Behr, M. J., Lesh, R., Post, T. R. & Silver, E. A. (1983). Rational-number concepts. In R. Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 91-126). New York: Academic Press.

Bjerke, A. H., Eriksen E., Rodal, C. & Ånestad, G. (2013). Når brøk ikke er tall - eksempler på misoppfatninger knyttet til brøk som tallstørrelse. In B. B. Pareliussen, R. A. Moen & T. Solhaug (Eds.), FoU i praksis 2012 (pp. 20-27). Trondheim: Akademika forlag.

Carraher, D. W. (1996). Learning about fractions. In L. P. Steffe, P. Nesher, P. Cobb, B. Sriraman & B. Greer (Eds.), Theories of mathematical learning (pp. 241-266). New York: Routledge.

Charalambous, C. Y. & Pitta-Pantazi, D. (2007). Drawing on a theoretical model to study students' understandings of fractions. Educational Studies in Mathematics, 64 (3), 293-316. https://doi.org/10.1007/s10649-006-9036-2

Doyle, K. M., Dias, O., Kennis, J. R., Czarnocha, B. & Baker, W. (2016). The rational number sub-constructs as a foundation for problem solving. Adults Learning Mathematics, 11 (1), 21-42.

Gray, J. & Ånestad, G. (2016). Aspekter ved brøk i en nasjonal prøve. In E. K. Hovik & B. Kleve (Eds.), Undervisningskunnskap i matematikk (pp. 61-77). Oslo: Cappelen Damm Akademisk.

Grønmo, L. S. & Bergem, O. K. (2009). Prestasjoner i matematikk. In L. S. Grønmo & T. Onstad (Eds.), Tegn til bedring. Norske elevers prestasjoner i matematikk og naturfag i TIMSS 2007 (pp. 49-111). Oslo: Unipub.

Grønmo, L. S. (2017). Et matematikkdidaktisk perspektiv. In L. S. Grønmo & A. Hole, Prioritering og progresjon i skolematematikken. En nøkkel til å lykkes i realfag. Analyser av TIMSS Advanced og andre internasjonale studier (pp. 45-61). Oslo: Cappelen Damm.

Hagesæther, P. V. (2013, May 29). Dette er Norges mest populære skolebøker. Aftenposten.

Hjardar, E. & Pedersen, J.-E. (2006). Faktor 1 - lærerens bok. Oslo: Cappelen.

Kieren, T. E. (1976). On the mathematical, cognitive, and instructional foundations of rational numbers. In R. Lesh (Ed). Number and measurement: papers from a research workshop (pp. 101-144). Columbus: ERIC/SMEAC.

Kieren, T. E. (1980). The rational number construct - its elements and mechanisms. In T. E. Kieren (Ed.), Recent research on number learning (pp. 125-150). Columbus: ERIC/SMEAC.

Kieren, T. E. (1993). Rational and fractional numbers: from quotient fields to recursive understanding. In T. Carpenter, E. Fennema & T. A. Romberg (Eds.), Rational numbers: an integration of research (pp. 49-84). Mahwah: Lawrence Erlbaum Associates.

Kunnskapsdepartementet (2013). Læreplan i matematikk fellesfag. Fastsett som forskrift av Kunnskapsdepartementet 21. juni 2013. Oslo: Kunnskapsdepartementet. Retrieved from http://data.udir.no/kl06/MAT1-04.pdf?lang=nno

Lamon, S. J. (1993). Ratio and proportion: children's cognitive and metacognitive processes. In T. Carpenter, E. Fennema & T. A. Romberg (Eds.), Rational numbers: an integration of research (pp. 131-156). Mahwah: Lawrence Erlbaum Associates.

Lamon, S. J. (2001). Presenting and representing: from fractions to rational numbers. In A. Cuoco & F. Curcio (Eds.), The roles of representation in school mathematics, 2001 yearbook (pp. 146-165). Reston: NCTM.

Lamon, S. J. (2007). Rational numbers and proportional reasoning: towards a theoretical framework for research. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 629-667). Charlotte: Information Age Publishing.

Leung, C. K. E. (2009, June). A preliminary study of Hong Kong students' understanding of fraction. Paper presented at the 3rd Redesigning Pedagogy International Conference 2009, Singapore.

Maugesten, M. & Torkildsen, S. H. (2006). Sirkel. (8-10). Oslo: Aschehoug & Co.

Marshall, S. P. (1993). Assessment of rational number understanding: a schema-based approach. In T. P. Carpenter, E. Fennema & T. A. Romberg (Eds.), Rational numbers: an integration of research (pp. 261-288). Mahwah: Lawrence Erlbaum Associates.

Misquitta, R. (2011). A review of the literature: fraction instruction for struggling learners in mathematics. Learning Disabilities Research & Practice, 26 (2), 109-119. https://doi.org/10.1111/j.1540-5826.2011.00330.x

Moss, J. & Case, R. (1999). Developing children's understanding of the rational numbers curriculum: a new model and an experimental curriculum. Journal of Research in Mathematics Education, 30 (2), 122-147. https://doi.org/10.2307/749607

Noelting, G. (1978). The development of proportional reasoning in the child and adolescent through combination of logic and arithmetic. In E. Cohors- Fresenborg & I. Wachsmuth (Eds.), Proceedings of the second International Conference for the Psychology of Mathematics Education (pp. 242-277). Universität Osnabrück.

Olive, J. & Lobato, J. (2008). The learning of rational number concepts using technology. In K. Heid & G. Blume (Eds.), Research on technology in teaching and learning of mathematics: research syntheses (pp. 1-55). Greenwich: Information Age Publishing.

Pantziara, M. & Philippou, G. (2012). Levels of students' "conception" of fractions. Educational Studies in Mathematics, 79 (1), 61-83. https://doi.org/10.1007/s10649-011-9338-x

Park, J., Güçler, B. & McCrory, R. (2013). Teaching prospective teachers about fractions: historical and pedagogical perspectives. Educational Studies in Mathematics, 82 (3), 455-479. https://doi.org/10.1007/s10649-012-9440-8

R Core Team (2018). R: A language and environment for statistical computing (Version 3.5.1) [Computer software]. Vienna: The R Foundation for Statistical Computing. Retrieved from https://cran.r-project.org/

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48 (2), 1-36. https://doi.org/10.18637/jss.v048.i02

Rosseel, Y. (2018). lavaan: An R package for structural equation modeling (Version 0.6-3) [Computer software]. Retrieved from https://cran.r-project.org/web/packages/lavaan/

Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A. et al. (2012). Early predictors of high school mathematics achievement. Psychological Science, 23 (7), 691-697. https://doi.org/10.1177/0956797612440101

Stafylidou, S. & Vosniadou, S. (2004). The development of students understanding of the numerical value of fractions. Learning and Instruction, 14 (5), 503-518. https://doi.org/10.1016/j.learninstruc.2004.06.015

Downloads

Published

2019-06-01

How to Cite

Gustavsen, T. S., & Imenes, O. G. (2019). Investigating the fit of a model for students’ understanding of fractions in a Norwegian context. NOMAD Nordic Studies in Mathematics Education, 24(2), 5–24. https://doi.org/10.7146/nomad.v24i2.149017

Issue

Section

Articles