Development of algebraic thinking: opportunities offered by the Swedish curriculum and elementary mathematics textbooks
DOI:
https://doi.org/10.7146/nomad.v24i1.148996Abstract
In search of the reasons for Swedish students’ low achievement in algebra in international and national evaluations, we investigate how the development of algebraic thinking is addressed in the Swedish national mathematics curriculum and two widely used mathematics textbook series for grades 1–6 in Sweden. The analytical tool used is based on the classification of ”big ideas” which research has shown as important for developing pupils’ algebraic understanding in early school grades. The results show that functional thinking, expressions, and equations are well represented topics both in the curriculum and the textbooks; however generalized arithmetic is a topic that is poorly developed in both the curriculum and the textbooks.
References
Blanton, M. & Kaput, J. J. (2011). Functional thinking as a route into algebra in the elementary grades. In J. Cai & E. Knuth (Eds.), Early algebraization (pp. 5-24). Berlin: Springer. https://doi.org/10.1007/978-3-642-17735-4_2
Blanton, M., Stephens, A., Knuth, E., Murphy Gardiner, A., Isler, I. & Kim, J. (2015). The development of children's algebraic thinking: the impact of a comprehensive early algebra intervention in third grade. Journal for Research in Mathematics Education, 46 (1), 39-87. https://doi.org/10.5951/jresematheduc.46.1.0039
Britt, M. S. & Irwin, K. C. (2011). Algebraic thinking with and without algebraic representation: a pathway for learning. In J. Cai & E. Knuth (Eds.), Early algebraization (pp. 137-159). Berlin: Springer. https://doi.org/10.1007/978-3-642-17735-4_10
Bryman, A. (2012). Social research methods. New York: Oxford University Press.
Bråting, K., Hemmi, K. & Madej, L. (2018). Teoretiska och praktiska perspektiv på generaliserad aritmetik. In J. Häggström, Y. Liljekvist, J. Bergman Ärlebäck, M. Fahlgren & O. Olande (Eds.), Perspectives on professional development of mathematics teachers. Proceedings of MADIF 11 (pp. 27-36). Gothenburg: NCM & SMDF.
Bråting, K., Hemmi, K., Madej, L. & Röj-Lindberg, A.-S. (2016, July). Towards research-based teaching of algebra - analyzing expected student progression in the Swedish curriculum grades 1-9. Paper presented at ICME-13, Hamburg.
Bråting, K. & Pejlare, J. (2015). On the relations between historical epistemology and students' conceptual developments in mathematics. Educational Studies in Mathematics, 89 (2), 251-265. https://doi.org/10.1007/s10649-015-9600-8
Cai, J., Lew, H., Morris, A., Moyer, J., Fong Ng, S. & Schmittau, J. (2005). The development of students' algebraic thinking in earlier grades. ZDM, 37 (1), 5-15. https://doi.org/10.1007/BF02655892
Cai, J. & Knuth, E. (Eds.) (2011). Early algebraization: a global dialogue from multiple perspectives. Berlin: Springer. https://doi.org/10.1007/978-3-642-17735-4
Carraher, D. W. & Schliemann, A. D (2007). Early algebra and algebraic reasoning. In F. K. Lester, Jr. (Ed.), Second handbook of research on mathematics teaching and learning (Vol. 2, pp. 669-705). Charlotte: Information Age.
Carraher, D. W. & Schliemann, A. D. (2015). Powerful ideas in elementary school mathematics. In L. D. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (3rd ed., pp. 191-218). New York: Taylor & Francis.
Carraher, D. W., Schliemann, A., Brizuela, B. & Earnest, D. (2006). Arithmetic and algebra in early mathematics education. Journal for Research in Mathematics Education, 37 (2), 87-115.
Fujii, T. (2003). Probing students' understanding of variables through cognitive conflict problems: Is the concept of a variable so difficult for students to understand? In N. A. Pateman, B. J. Dougherty & J. T. Zilliox (Eds.), Proceedings of the 27th conference of the International Group for the Psychology of Mathematics Education, PME 27 (Vol. 1, pp. 49-65). Honolulu: PME.
Hansen, K., Gustafsson, J.-E., Rosén, M., Sulkunen, S., Nissinen, K. et al. (2014). Northern Lights on TIMSS and PIRLS 2011. Copenhagen: Nordic Council of Ministers. https://doi.org/10.6027/TN2014-528
Hemmi, K., Bråting, K., Liljekvist, Y., Prytz, J., Madej, L. et al. (2018). Characterizing Swedish school algebra - initial findings from analyses of steering documents, textbooks and teachers' discourses. In E. Norén, H. Palmér & A. Cooke (Eds.), Nordic research in mathematics education. Papers of NORMA 17 (pp. 299-308). Gothenburg: SMDF.
Hemmi, K., Lepik, M. & Viholainen, A. (2013). Analysing proof-related competences in Estonian, Finnish and Swedish mathematics curricula - towards a framework of developmental proof. Journal of Curriculum Studies, 45 (3), 354-378. https://doi.org/10.1080/00220272.2012.754055
Hewitt, D. (2014). A symbolic dance: the interplay between movement, notation, and mathematics on a journey toward solving equations. Mathematical Thinking and Learning, 16 (1), 1-31. https://doi.org/10.1080/10986065.2014.857803
Hiebert, J. & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students' learning. In F. K. Lester, Jr. (Ed.), Second handbook of research on mathematics teaching and learning (Vol. 1, pp. 371-404). Charlotte: Information Age.
Hong, D. S. & Choi, K. M. (2014). A comparison of Korean and American secondary school textbooks: the case of quadratic equations. Educational Studies in Mathematics, 85 (2), 241-263. https://doi.org/10.1007/s10649-013-9512-4
Jakobsson-Åhl, T. (2008). Word problems in upper secondary algebra in Sweden over the years 1960-2000. Nordic Studies in Mathematics Education, 13 (1), 7-27.
Johansson, M. (2006). Teaching mathematics with textbooks: a classroom and curricular perspective (Doctoral thesis). Luleå University of Technology.
Kaput, J. J. (2008). What is algebra? What is algebraic reasoning? In J. J. Kaput, D. W. Carraher & M. L. Blanton (Eds), Algebra in the early grades (pp. 5-17). New York: Lawrence Earlbaum. https://doi.org/10.4324/9781315097435-2
Katz, V. & Barton, B. (2007). Stages in the history of algebra with implications for teaching. Educational Studies in Mathematics, 66 (2), 185-201. https://doi.org/10.1007/s10649-006-9023-7
Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels. In F. K. Lester, Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 707-762). Charlotte: Information Age.
Kieran, C., Pang, J., Schifter, D. & Ng., S.F. (2016). Early algebra. Research into its nature, its learning, its teaching. Cham: Springer International. https://doi.org/10.1007/978-3-319-32258-2
Kilhamn, C. (2014). When does a variable vary? Identifying mathematical content knowledge for teaching variables. Nordic Studies in Mathematics Education, 19 (3-4), 83-100.
Kongelf, R. K. (2015). Introduksjon av algebra i matematikkbøker for ungdomstrinnet i Norge. Nordic Studies in Mathematics Education, 20 (3-4), 83-109.
Lindensjö, B. & Lundgren, U. P. (2000). Utbildningsreformer och politisk styrning. Stockholm: HLS förlag.
Lundberg, A. (2011). Proportionalitetsbegreppet i den svenska gymnasiematematiken: en studie om läromedel och nationella prov (Licentiate thesis). Linköping University.
McGarvey, L. M. (2012). What is a pattern? Criteria used by teachers and young children. Mathematical Thinking and Learning, 14(4), 310-337. https://doi.org/10.1080/10986065.2012.717380
Murray, Å. & Liljefors, R. (1983). Matematik i svensk skola. Stockholm: Liber Utbildning.
NCTM (2000). Principles and standards for school mathematics. Reston: Author.
NCTM (2006). Curriculum focal points for prekindergarten through grade 8 mathematics: a quest for coherence. Reston: Author.
Neuman, J., Hemmi, K., Ryve, A. & Wiberg M. (2015). Mathematics textbooks' impact on classroom instruction: examining the views of 278 Swedish teachers. In H. Silfverberg, T. Kärki & M. Hannula, (Eds.), Proceedings of the 7th Nordic Conference on Mathematics Education, NORMA 14 (pp. 215-224). University of Turku.
OECD (2010). Draft PISA 2012 mathematics framework. Paris: OECD publishing.
Skolverket (2008). TIMSS 2007 - huvudrapport. Svenska grundskoleelevers kunskaper i matematik och naturvetenskap i ett internationellt perspektiv. Stockholm: Author.
Skolverket (2011). Läroplan för grundskolan, förskoleklassen och fritidshemmet (National curriculum in Sweden). Stockholm: Author.
Skolverket (2012). TIMSS 2011 - huvudrapport. Svenska grundskoleelevers kunskaper i matematik och naturvetenskap i ett internationellt perspektiv. Stockholm: Author.
Skolverket (2016). TIMSS 2015 - huvudrapport. Svenska grundskoleelevers kunskaper i matematik och naturvetenskap i ett internationellt perspektiv. Stockholm: Author.
Sfard, A. (1995). The development of algebra: confronting historical and psychological perspectives. Journal of Mathematical Behavior, 14, 15-39. https://doi.org/10.1016/0732-3123(95)90022-5
Stein, M. K., Remillard, J. & Smith, M. S. (2007). How curriculum influences student learning. In F. K. Lester, Jr. (Ed.), Second handbook of research on mathematics teaching and learning (Vol. 1, pp. 319-370). Charlotte: Information Age.
Valverde, G., Bianchi, L. J., Wolfe, R., Schmidt, W. H. & Hounang, R. T. (2002). According to the book. Using TIMSS to investigate the translation of policy into practice through the world of textbooks. New York: Springer-Verlag. https://doi.org/10.1007/978-94-007-0844-0
Yang, D.-C., Tseng, Y.-K. & Wang, T.-L. (2017). A comparison of geometry problems in middle-grade mathematics textbooks from Taiwan, Singapore, Finland, and the United States. EURASIA Journal of Mathematics Science and Technology Education, 13 (7), 2841-2857. https://doi.org/10.12973/eurasia.2017.00721a
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.