Læreres utbytte av kunnskap om hjernen
DOI:
https://doi.org/10.7146/nomad.v23i2.148953Abstract
Konkrete klasseromsanvendelser av hjerneforskning har latt vente på seg. I denne oversiktsartikkelen undersøkes det potensielle utbyttet for lærerstudenter ved å kjenne til ulike temaer knytta til hjernens befatning med tall og aritmetikk – uavhengig av hvorvidt slike en-til-en-anvendelser eksisterer eller kan eksistere. Av potensiell verdi for lærere framheves blant annet kunnskap om hvilke vanskeligheter et assosiativt minne forårsaker i forbindelse med aritmetiske tabeller. Med bakgrunn i moderne hjerneforskning belyses ei tallbehandling som kan deles opp i en medfødt ”tallsans” og et kultur- og utdanningsavhengig eksakt tallsystem, hvordan ulike binæroperasjoner behandles på grunnleggende forskjellig vis av hjernen, og hvordan innlæringsstrategi kan påvirke lagringa av aritmetisk kunnskap. Temaer som barnets ”logaritmiske indre tallinje” og dyskalkuli blir også belyst. Jeg konkluderer med at denne typen kunnskap om hjernen vil utvide lærerstudentenes forståelse av det lærende barnet, og dermed kunne påvirke deres praksis.
References
Agrillo, C., Piffer, L. & Adriano, A. (2013). Individual differences in non- symbolic numerical abilities predict mathematical achievements but contradict ATOM. Behavioral and Brain Functions, 9 (1), 26. https://doi.org/10.1186/1744-9081-9-26
Andres, M., Michaux, N. & Pesenti, M. (2012). Common substrate for mental arithmetic and finger representation in the parietal cortex. Neuroimage, 62 (3), 1520-1528. https://doi.org/10.1016/j.neuroimage.2012.05.047
Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature Reviews: Neuroscience, 9 (4), 278-291. https://doi.org/10.1038/nrn2334
Ansari, D. (2010). The computing brain. In D. A. Souza et al. (red.), Mind, brain and education: neuroscience implications for the classroom (pp. 200-225). Bloomington: Solution Tree Press.
Ashcraft, M. H. (1992). Cognitive arithmetic: a review of data and theory. Cognition, 44 (1-2), 75-106. https://doi.org/10.1016/0010-0277(92)90051-I
Ashcraft, M. H. & Faust, M. W. (1994). Mathematics anxiety and mental arithmetic performance - an exploratory investigation. Cognition & Emotion, 8 (2), 97-125. https://doi.org/10.1080/02699939408408931
Ashkenazi, S. & Danan, Y. (2017). The role of mathematical anxiety and working memory on the performance of different types of arithmetic tasks. Trends in neuroscience and education, 7, 1-10. https://doi.org/10.1016/j.tine.2017.05.001
Baroody, A. J. (1999). The roles of estimation and the commutativity principle in the development of third graders' mental multiplication. Journal of Experimental Child Psychology, 74 (3), 157-193. https://doi.org/10.1006/jecp.1999.2524
Barth, H., La Mont, K., Lipton, J. & Spelke, E. S. (2005). Abstract number and arithmetic in preschool children. Proceedings of the National Academy of Sciences of the United States of America, 102 (39), 14116-14121. https://doi.org/10.1073/pnas.0505512102
Bear, M. F., Connors, B. W. & Paradiso, M. A. (2016). Neuroscience: exploring the brain (Fourth edition. ed.). Philadelphia: Wolters Kluwer.
Berteletti, I., Man, G. & Booth, J. R. (2015). How number line estimation skills relate to neural activations in single digit subtraction problems. Neuroimage, 107, 198-206. https://doi.org/10.1016/j.neuroimage.2014.12.011
Bishop, D. V. (2010). Which neurodevelopmental disorders get researched and why? PloS One, 5 (11), e15112. https://doi.org/10.1371/journal.pone.0015112
Bjuland, R., Jakobsen, A. & Munthe, E. (2014). Muligheter og begrensninger for studenters læring i praksisopplæring - eksempel fra en førveiledningsdialog i matematikk. Nordic Studies in Mathematics Education, 19 (1), 20.
Bowers, J. S. (2016). The practical and principled problems with educational neuroscience. Psychological Review, 123 (5), 600-612. https://doi.org/10.1037/rev0000025
Bruer, J. T. (1997). Education and the brain: a bridge too far. Educational Researcher, 26 (8), 4-16. https://doi.org/10.2307/1176301
Bruer, J. T. (2016). Where Is Educational Neuroscience? Educational Neuroscience, 1, 237761611561803. https://doi.org/10.1177/2377616115618036
Butterworth, B. (1999). The mathematical brain. London: Macmillan.
Butterworth, B. & Varma, S. (2013). Mathematical development. I D. Maureschal, B. Butterworth & A. Tolmie (red.), Educational neuroscience (pp. 201-236). Oxford: Wiley Blackwell. https://doi.org/10.1002/9781394259588.ch8
Cantlon, J. F., Brannon, E. M., Carter, E. J. & Pelphrey, K. A. (2006). Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biology, 4 (5), e125. https://doi.org/10.1371/journal.pbio.0040125
Cooney, J. B., Swanson, H. L. & Ladd, S. F. (1988). Acquisition of mental multiplication skill - evidence for the transition between counting and retrieval strategies. Cognition and Instruction, 5 (4), 323-345. https://doi.org/10.1207/s1532690xci0504_5
De Smedt, B. & Grabner, R. (red.). (2016). Cognitive neuroscience and mathematics learning. Berlin Heidelberg: Springer.
De Smedt, B., Holloway, I. D. & Ansari, D. (2011). Effects of problem size and arithmetic operation on brain activation during calculation in children with varying levels of arithmetical fluency. Neuroimage, 57 (3), 771-781. https://doi.org/10.1016/j.neuroimage.2010.12.037
Dehaene, S. (2010). The calculating brain. I D. Sousa (Ed.), Mind, brain, and education (pp. 179_200). Bloomington: Solution Tree Press.
Dehaene, S. (2011). The massive impact of literacy on the brain and its consequences for education. Paper presented at the Pontifical Academy of Sciences, Vatican City.
Dehaene, S. (2011). The number sense: how the mind creates mathematics (Rev. and updated ed.). New York: Oxford University Press.
Dehaene, S. & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 33 (2), 219-250. https://doi.org/10.1016/S0010-9452(08)70002-9
Dehaene, S., Izard, V., Pica, P. & Spelke, E. (2006). Core knowledge of geometry in an Amazonian indigene group. Science, 311 (5759), 381-384. https://doi.org/10.1126/science.1121739
Dehaene, S., Izard, V., Spelke, E. & Pica, P. (2008). Log or linear? Distinct intuitions of the number scale in Western and Amazonian indigene cultures. Science, 320 (5880), 1217-1220. https://doi.org/10.1126/science.1156540
Dehaene, S., Molko, N., Cohen, L. & Wilson, A. J. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14 (2), 218-224. https://doi.org/10.1016/j.conb.2004.03.008
Dehaene, S., Piazza, M., Pinel, P. & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20 (3), 487-506. https://doi.org/10.1080/02643290244000239
Dehaene, S., Spelke, E., Pinel, P., Stanescu, R. & Tsivkin, S. (1999). Sources of mathematical thinking: behavioral and brain-imaging evidence. Science, 284 (5416), 970-974. https://doi.org/10.1126/science.284.5416.970
Dekker, S., Lee, N., Howard-Jones, P. & Jolles, J. (2012). Neuromyths in education: prevalence and predictors of misconceptions among teachers. Frontiers in Psychology, 3 (429). https://doi.org/10.3389/fpsyg.2012.00429
Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A. et al., (2003). Learning complex arithmetic - an fMRI study. Cognitive Brain Research, 18 (1), 76-88. https://doi.org/10.1016/j.cogbrainres.2003.09.005
Delazer, M., Ischebeck, A., Domahs, F., Zamarian, L., Koppelstaetter, F. et al. (2005). Learning by strategies and learning by drill - evidence from an fMRI study. Neuroimage, 25 (3), 838-849. https://doi.org/10.1016/j.neuroimage.2004.12.009
Deligiannidi, K. & Howard-Jones, P. A. (2015). The neuroscience literacy of teachers in Greece. Procedia - Social and Behavioral Sciences, 174, 3909-3915. https://doi.org/10.1016/j.sbspro.2015.01.1133
Eden, G. F., Jones, K. M., Cappell, K., Gareau, L., Wood, F. B. et al. (2004). Neural changes following remediation in adult developmental dyslexia. Neuron, 44 (3), 411-422. https://doi.org/10.1016/j.neuron.2004.10.019
Ferrero, M., Garaizar, P. & Vadillo, M. A. (2016). Neuromyths in education: prevalence among Spanish teachers and an exploration of cross- cultural variation. Frontiers in Human Neuroscience, 10 (496). https://doi.org/10.3389/fnhum.2016.00496
Gilmore, C. K. & Spelke, E. S. (2008). Children's understanding of the relationship between addition and subtraction. Cognition, 107 (3), 932-945. https://doi.org/10.1016/j.cognition.2007.12.007
Goswami, U. (2006). Neuroscience and education: From research to practice? Nature Reviews: Neuroscience, 7 (5), 406-411. https://doi.org/10.1038/nrn1907
Grabner, R. H., Ansari, D., Koschutnig, K., Reishofer, G., Ebner, F. & Neuper, C. (2009). To retrieve or to calculate? Left angular gyrus mediates the retrieval of arithmetic facts during problem solving. Neuropsychologia, 47 (2), 604-608. https://doi.org/10.1016/j.neuropsychologia.2008.10.013
Gross, H. J., Pahl, M., Si, A., Zhu, H., Tautz, J. & Zhang, S. W. (2009). Number- based visual generalisation in the honeybee. PloS One, 4 (1), e4263. https://doi.org/10.1371/journal.pone.0004263
Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q. & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences of the United States of America, 109 (28), 11116-11120. https://doi.org/10.1073/pnas.1200196109
Halberda, J., Mazzocco, M. M. M. & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths aschievement. Nature, 455 (7213), 665-U662. https://doi.org/10.1038/nature07246
Halberda, J. & Feigenson, L. (2008). Developmental change in the acuity of the "number sense": the approximate number system in 3-, 4-, 5-, and 6-year- olds and adults. Developmental Psychology, 44 (5), 1457-1465. https://doi.org/10.1037/a0012682
Herculano-Houzel, S. (2002). Do you know your brain? A survey on public neuroscience literacy at the closing of the decade of the brain. Neuroscientist, 8 (2), 98-110. https://doi.org/10.1177/107385840200800206
Hermida, M. J., Segretin, M. S., Soni García, A. & Lipina, S. J. (2016). Conceptions and misconceptions about neuroscience in preschool teachers: a study from Argentina. Educational Research, 58 (4), 457-472. https://doi.org/10.1080/00131881.2016.1238585
Howard-Jones, P. (2010). Introducing neuroeducational research: neuroscience, education and the brain from contexts to practice. London: Routledge. https://doi.org/10.4324/9780203867303
Howard-Jones, P., Franey, L., Mashmoushi, R. & Liao, Y. (2009, September). The neuroscience literacy of trainee teachers. Paper presented at the British Educational Research Association Annual Conference.
Howard-Jones, P. A., Varma, S., Ansari, D., Butterworth, B., De Smedt, B. et al. (2016). The principles and practices of educational neuroscience: comment on Bowers (2016). Psychological Review, 123 (5), 620-627. https://doi.org/10.1037/rev0000036
Immordino-Yang, M. H. & Faeth, M. (2010). The role of emotion and skilled intuition in learning. I D. A. Souza et al. (red.), Mind, brain and education: neuroscience implications for the classroom (pp. 69-84). Bloomington: Solution Tree Press.
Ischebeck, A., Zamarian, L., Siedentopf, C., Koppelstatter, F., Benke, T. et al. (2006). How specifically do we learn? Imaging the learning of multiplication and subtraction. Neuroimage, 30 (4), 1365-1375. https://doi.org/10.1016/j.neuroimage.2005.11.016
Izard, V., Dehaene-Lambertz, G. & Dehaene, S. (2008). Distinct cerebral pathways for object identity and number in human infants. PLoS Biology, 6 (2), e11. https://doi.org/10.1371/journal.pbio.0060011
Izard, V., Pica, P., Spelke, E. S. & Dehaene, S. (2011). Flexible intuitions of Euclidean geometry in an Amazonian indigene group. Proceedings of the National Academy of Sciences of the United States of America, 108 (24), 9782- 9787. https://doi.org/10.1073/pnas.1016686108
Izard, V., Sann, C., Spelke, E. S. & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences of the United States of America, 106 (25), 10382-10385. https://doi.org/10.1073/pnas.0812142106
Jost, K., Khader, P., Burke, M., Bien, S. & Rosler, F. (2009). Dissociating the solution processes of small, large, and zero multiplications by means of fMRI. Neuroimage, 46 (1), 308-318. https://doi.org/10.1016/j.neuroimage.2009.01.044
Jost, K., Khader, P. H., Burke, M., Bien, S. & Rosler, F. (2011). Frontal and parietal contributions to arithmetic fact retrieval: a parametric analysis of the problem-size effect. Human Brain Mapping, 32 (1), 51-59. https://doi.org/10.1002/hbm.21002
Kant, I., Serck-Hanssen, C., Mathisen, S. & Skar, Ø. (2005). Kritikk av den rene fornuft. Oslo: Boklubben.
Knops, A., Thirion, B., Hubbard, E. M., Michel, V. & Dehaene, S. (2009). Recruitment of an area involved in eye movements during mental arithmetic. Science, 324 (5934), 1583-1585. https://doi.org/10.1126/science.1171599
Kounios, J., Fleck, J. I., Green, D. L., Payne, L., Stevenson, J. L. et al. (2008). The origins of insight in resting-state brain activity. Neuropsychologia, 46 (1), 281-291. https://doi.org/10.1016/j.neuropsychologia.2007.07.013
Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schonmann, C. et al, (2011). Mental number line training in children with developmental dyscalculia. Neuroimage, 5 (3), 782-795. https://doi.org/10.1016/j.neuroimage.2011.01.070
Kucian, K., Loenneker, T., Dietrich, T., Dosch, M., Martin, E. & von Aster, M. (2006). Impaired neural networks for approximate calculation in dyscalculic children: a functional MRI study. Behavioral and Brain Functions, 2, 31. https://doi.org/10.1186/1744-9081-2-31
Landerl, K., Bevan, A. & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: a study of 8-9-year-old students. Cognition, 93 (2), 99-125. https://doi.org/10.1016/j.cognition.2003.11.004
Lee, K., Lim, Z. Y., Yeong, S. H., Ng, S. F., Venkatraman, V. & Chee, M. W. (2007). Strategic differences in algebraic problem solving: neuroanatomical correlates. Brain Research, 1155, 163-171. https://doi.org/10.1016/j.brainres.2007.04.040
Lee, K. M. (2000). Cortical areas differentially involved in multiplication and subtraction: a functional magnetic resonance imaging study and correlation with a case of selective acalculia. Annals of Neurology, 48 (4), 657-661. https://doi.org/10.1002/1531-8249(200010)48:4<657::AID-ANA13>3.0.CO;2-K
Lemer, C., Dehaene, S., Spelke, E. & Cohen, L. (2003). Approximate quantities and exact number words: dissociable systems. Neuropsychologia, 41 (14), 1942-1958. https://doi.org/10.1016/S0028-3932(03)00123-4
Ludvigsenutvalget. (2015). NOU 2015:8 Fremtidens skole - fornyelse av fag og kompetanser. Retrieved from https://www.regjeringen.no/no/dokumenter/nou-2015-8/id2417001/
McCrink, K. & Spelke, E. S. (2010). Core multiplication in childhood. Cognition, 116 (2), 204-216. https://doi.org/10.1016/j.cognition.2010.05.003
McCrink, K. & Spelke, E. S. (2016). Non-symbolic division in childhood. Journal of Experimental Child Psychology, 142, 66-82. https://doi.org/10.1016/j.jecp.2015.09.015
McCulloch, W. S. (1960). What is a number, that a man may know it, and a man, that he may know a number? General Semantics Bulletin, 26/27, 7-18.
Menon, V. (2010). Developmental cognitive neuroscience of arithmetic: implications for learning and education. ZDM, 42 (6), 515-525. https://doi.org/10.1007/s11858-010-0242-0
Miller, K. F. & Paredes, D. R. (1990). Starting to add worse: effects of learning to multiply on children's addition. Cognition, 37 (3), 213-242. https://doi.org/10.1016/0010-0277(90)90046-M
Moeller, K., Martignon, L., Wessolowski, S., Engel, J. & Nuerk, H.-C. (2011). Effects of finger counting on numerical development - the opposing views of neurocognition and mathematics education. Frontiers in Psychology, 2, 328. https://doi.org/10.3389/fpsyg.2011.00328
Mussolin, C., Noël, M.-P., Pesenti, M., Grandin, C. & De Volder, A. G. (2013). Neural correlates of the numerical distance effect in children. Frontiers in Psychology, 4, 663. https://doi.org/10.3389/fpsyg.2013.00663
Nieder, A. (2013). Coding of abstract quantity by "number neurons" of the primate brain. Journal of Comparative Physiology a-Neuroethology Sensory Neural and Behavioral Physiology, 199 (1), 1-16. https://doi.org/10.1007/s00359-012-0763-9
Nieder, A. & Miller, E. K. (2003). Coding of cognitive magnitude: compressed scaling of numerical information in the primate prefrontal cortex. Neuron, 37 (1), 149-157. https://doi.org/10.1016/S0896-6273(02)01144-3
Noel, M. P. (2005). Finger gnosia: a predictor of numerical abilities in children? Child Neuropsychology, 11 (5), 413-430. https://doi.org/10.1080/09297040590951550
Park, J. H. & Nunes, T. (2001). The development of the concept of multiplication. Cognitive Development, 16 (3), 763-773. https://doi.org/10.1016/S0885-2014(01)00058-2
Pei, X., Howard-Jones, P. A., Zhang, S., Liu, X. & Jin, Y. (2015). Teachers' understanding about the brain in East China. Procedia - Social and Behavioral Sciences, 174, 3681-3688. https://doi.org/10.1016/j.sbspro.2015.01.1091
Penner-Wilger, M. & Anderson, M. L. (2013). The relation between finger gnosis and mathematical ability: why redeployment of neural circuits best explains the finding. Frontiers in Psychology, 4, 1-9. https://doi.org/10.3389/fpsyg.2013.00877
Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S. et al. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116 (1), 33-41. https://doi.org/10.1016/j.cognition.2010.03.012
Piazza, M. & Izard, V. (2009). How humans count: numerosity and the Parietal Cortex. Neuroscientist, 15 (3), 261-273. https://doi.org/10.1177/1073858409333073
Posner, M. I. (2010). Neuroimaging tools and the evolution of educational neuroscience. I D. A. Souza et al. (red.), Mind, brain and education: neuroscience implications for the classroom (pp. 27-44). Bloomington: Solution Tree Press.
Price, G. R., Holloway, I., Rasanen, P., Vesterinen, M. & Ansari, D. (2007). Impaired parietal magnitude processing in developmental dyscalculia. Current Biology, 17 (24), R1042-1043. https://doi.org/10.1016/j.cub.2007.10.013
Rapin, I. (2016). Dyscalculia and the calculating brain. Pediatric Neurology, 61, 11-20. https://doi.org/10.1016/j.pediatrneurol.2016.02.007
Reigosa-Crespo, V., Valdes-Sosa, M., Butterworth, B., Estevez, N., Rodriguez, M. et al. (2012). Basic numerical capacities and prevalence of developmental dyscalculia: the Havana survey. Developmental Psychology, 48 (1), 123-135. https://doi.org/10.1037/a0025356
Roland, P. E. & Friberg, L. (1985). Localization of cortical areas activated by thinking. Journal of Neurophysiology, 53 (5), 1219-1243. https://doi.org/10.1152/jn.1985.53.5.1219
Rotzer, S., Kucian, K., Martin, E., von Aster, M., Klaver, P. & Loenneker, T. (2008). Optimized voxel-based morphometry in children with developmental dyscalculia. Neuroimage, 39 (1), 417-422. https://doi.org/10.1016/j.neuroimage.2007.08.045
Shaywitz, B. A., Shaywitz, S. E., Blachman, B. A., Pugh, K. R., Fulbright, R. K. et al. (2004). Development of left occipitotemporal systems for skilled reading in children after a phonologically-based intervention. Biological Psychiatry, 55 (9), 926-933. https://doi.org/10.1016/j.biopsych.2003.12.019
Sousa, D. (2010). How science met pedagogy. I D. A. Souza et al. (red.), Mind, brain and education: neuroscience implications for the classroom (pp. 9-26). Bloomington: Solution Tree Press.
Starkey, P. & Cooper, R. G., Jr. (1980). Perception of numbers by human infants. Science, 210 (4473), 1033-1035. https://doi.org/10.1126/science.7434014
Susac, A. & Braeutigam, S. (2014). A case for neuroscience in mathematics education. Frontiers in Human Neuroscience, 8, 314. https://doi.org/10.3389/fnhum.2014.00314
Willis, J. (2010). The current impact of neuroscience on teaching and learning. I D. A. Souza et al. (red.), Mind, brain and education: neuroscience implications for the classroom (pp. 45-68). Bloomington: Solution Tree Press.
Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358 (6389), 749-750. https://doi.org/10.1038/358749a0
Zamarian, L., Ischebeck, A. & Delazer, M. (2009). Neuroscience of learning arithmetic - evidence from brain imaging studies. Neuroscience & Biobehavioral Reviews, 33 (6), 909-925. https://doi.org/10.1016/j.neubiorev.2009.03.005
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.