A tool for understanding pupils’ mathematical thinking

Authors

  • Hanna Viitala

DOI:

https://doi.org/10.7146/nomad.v22i2.148794

Abstract

This article provides a tool for studying pupils’ mathematical thinking. Mathematical thinking is seen as a cognitive function that is highly influenced by affect and metalevel of mind. The situational problem solving behaviour is studied together with metacognition and affect which together with pupils’ view of mathematics form a dynamic construct that reveals pupils’ mathematical thinking. The case of Daniel is introduced to illustrate the dynamic nature of the framework.

References

Bailey, D, H., Watts, T., W., Littlefield, A. K. & Geary, D. C. (2014). State and trait effects on individual differences in children's mathematical development. Psychological Science. https://doi.org/10.1177/0956797614547539

Burton, L. (1984). Mathematical thinking: The struggle for meaning. Journal for Research in Mathematics Education, 15 (1), 35-49. https://doi.org/10.2307/748986

Burton, L. (1999). Mathematics and their epistemologies - and the learning of mathematics. In I. Schwank (Ed.), European research in mathematics education I - proceedings of the first conference of the European Society in Mathematics Education (Vol. 1, Internet version, pp. 87-102). Retrieved from http://www.mathematik.uni-dortmund.de/~erme/doc/cerme1/cerme1_ proceedings_part1.pdf

Callejo, M. L. & Vila, A. (2009). Approach to mathematical problem solving and students' belief systems: two case studies. Educational Studies in Mathematics, 72 (1), 111-126. https://doi.org/10.1007/s10649-009-9195-z

Carlson, M. P. (1999). The mathematical behavior of six successful mathematics graduate students: influences leading to mathematical success. Educational Studies in Mathematics, 40 (3), 237-258. https://doi.org/10.1023/A:1003819513961

Carlson, M. P. & Bloom, I. (2005). The cyclic nature of problem solving: an emergent multidimensional problem-solving framework. Educational Studies in Mathematics, 58 (1), 45-75. https://doi.org/10.1007/s10649-005-0808-x

DeBellis, V. A. & Goldin, G. A. (2006). Affect and meta-affect in mathematical problem solving: a representational perspective. Educational Studies in Mathematics, 63 (2), 131-147. https://doi.org/10.1007/s10649-006-9026-4

Flavell, J. H. (1976). Metacognitive aspects of problem solving. In L. Resnick (Ed.), The nature of intelligence (pp. 231-236). Hillsdale: Erlbaum. https://doi.org/10.4324/9781032646527-16

Flavell, J. H. (1979). Metacognition and cognitive monitoring: a new area of cognitive-developmental inquiry. American Psychologist, 34, 906-911. https://doi.org/10.1037/0003-066X.34.10.906

FNBE. (2004). National core curriculum for basic education 2004. Finnish National Board of Education. Retrieved from http://www.oph.fi/english/curricula_and_qualifications/basic_education/curricula_2004

FNBE. (2014). Perusopetuksen opetussuunnitelman perusteet 2014 [National core curriculum for basic education 2014]. Finnish National Board of Education. Retrieved from http://www.oph.fi/download/163777_perusopetuksen_opetussuunnitelman_perusteet_2014.pdf

Furinghetti, F. & Pehkonen, E. (2002). Rethinking characterizations of beliefs. In G. C. Leder, E. Pehkonen & G. Törner (Eds.), Beliefs: a hidden variable in mathematics education (pp. 39-57). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47958-3_3

Goldin, G. A. (2002). Affect, meta-affect, and mathematical belief structures. In G. C. Leder, E. Pehkonen & G. Törner (Eds.), Beliefs: a hidden variable in mathematics education (pp. 59-72). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47958-3_4

Hannula, M. S. (2007). Finnish research on affect in mathematics: blended theories, mixed methods and some findings. ZDM, 39 (3), 197-203. https://doi.org/10.1007/s11858-007-0022-7

Hannula, M. S. (2011). The structure and dynamics of affect in mathematical thinking and learning. In M. Pytlak, T. Rowlan. & E. Swoboda (Eds.), Proceedings of the seventh congress of the European Society for Research in Mathematics Education (pp. 34-60). University of Rzeszów.

Hannula, M. S. (2012). Exploring new dimensions of mathematics-related affect: embodied and social theories. Research in Mathematics Education, 14 (2), 137-161. https://doi.org/10.1080/14794802.2012.694281

Hannula, M. S. & Laakso, J. (2011). The structure of mathematics related beliefs, attitudes and motivation among Finnish grade 4 and grade 8 students. In B. Ubuz (Ed.), Proceedings of the 35th conference of the International Group for the Psychology of Mathematics Education (Vol 3, pp. 9-16). Ankara: PME.

Hannula, M. S., Maijala, H., Pehkonen, E. & Soro, R. (2002). Taking a step to infinity. In S. Lehti & K. Merenluoto (Eds.), Third European symposium on conceptual change - a process approach to conceptual change (pp. 195-200). University of Turku.

Hirvonen, K. (2012). Onko laskutaito laskussa? Matematiikan oppimistulokset peruskoulun päättövaiheessa 2011 [Are calculating skills declining? Mathematics learning results at the end of the comprehensive school in 2011]. Helsinki: Finnish National Board of Education.

Iversen, S. M. & Larson, C. J. (2006). Simple thinking using complex math vs. complex thinking using simple math - a study using model eliciting activities to compare students' abilities in standardized tests to their modelling abilities. ZDM, 38 (3), 281-292. https://doi.org/10.1007/BF02652811

Kvale, S. & Brinkmann, S. (2009). InterViews (2nd ed.). London: Sage.

Lesh, R. & Clarke, D. (2000). Formulating operational definitions of desired outcomes of instruction in mathematics and science education. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 113-149). Mahwah: Lawrence Erlbaum Associates.

Lester, F. K. Jr. (1994). Musings about mathematical problem solving research: 1970-1994. Journal for Research in Mathematics Education, 25 (6), 660-675. https://doi.org/10.2307/749578

Mason, J., Burton, L. & Stacey, K. (1982). Thinking mathematically. Bristol: Addison-Wesley.

Mayer, R. E. (2003). Mathematical problem solving. In J. M. Royer (Ed.), Mathematical cognition, (pp. 69-92). Greenwich: Information Age Publishing.

McGregor, D. (2007). Developing thinking, developing learning: a guide to thinking skills in education. Maidenhead: Open University Press.

Morselli, F. & Sabena, C. (2015). "Let's play! Let's try with numbers!" Preservice teachers' affective pathways in problem solving. In K. Krainer & N. Vondrová (Eds.), Proceedings of CERME9 (pp. 1231-1237). Retrieved from https://hal.archives-ouvertes.fr/hal-01287350/

Mullis, I. V. S., Martin, M. O., Foy, P. & Arora, A. (2012). TIMSS 2011 international results in mathematics. Boston: TIMSS & PIRLS International Study Center.

Niss, M. (1999). Aspects of the nature and state of research in mathematics education. Educational studies in mathematics, 40 (1), 1-24. https://doi.org/10.1023/A:1003715913784

Nohda, N. (2000). Teaching by open-approach method in Japanese mathematics classroom. In T. Nakahara & M. Koyama (Eds.), Proceedings of the 24th conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 39-53). Hiroshima: PME.

OECD. (2006). Assessing scientific, reading and mathematical literacy: a framework for PISA 2006. Retrieved from http://www.oecd-ilibrary.org/education/assessing-scientific-reading-and-mathematical-literacy_9789264026407-en

OECD. (2013). PISA 2012 assessment and analytical framework: mathematics, reading, science, problem solving and financial literacy. Retrieved from http://www.oecd.org/pisa/pisaproducts/PISA%202012%20framework%20e-book_final.pdf https://doi.org/10.1787/9789264190511-en

OECD. (2014). PISA 2012 results. What students know and can do - student performance in mathematics, reading and science (Volume I, revised edition). Retrieved from http://www.oecd.org/pisa/keyfindings/pisa-2012-results-volume-I.pdf

Op't Eynde, P., Corte, E. de & Verschaffel, L. (2002). Framing students' mathematics-related beliefs. In G. C. Leder, E. Pehkonen & G. Törner (Eds.), Beliefs: a hidden variable in mathematics education (pp. 13-37). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47958-3_2

Pehkonen, E. (1995). Pupils' view of mathematics: initial report for an international comparison project (Research report 152). Department of teacher education, University of Helsinki.

Pepin, B. & Rösken-Winter B. (Eds.). (2015). From beliefs to dynamic affect systems in mathematics education: exploring a mosaic of relationships and interactions. Dordrecht: Springer International Publishing. https://doi.org/10.1007/978-3-319-06808-4

Polya, G. (1957). How to solve it. Princeton: Lawrence Erlbaum.

Rautopuro J. (Ed.) (2013). Hyödyllinen pakkolasku. Matematiikan oppimistulokset peruskoulun päättövaiheessa 2012 [Useful forced landing. Mathematics learning results at the end of the comprehensive school in 2012]. Helsinki: Finnish National Board of Education.

Rösken, B., Hannula, M. S. & Pehkonen, E. (2011). Dimensions of students' views of themselves as learners of mathematics. ZDM, 43 (4), 497-506. https://doi.org/10.1007/s11858-011-0315-8

Schoenfeld, A. (1985). Mathematical problem solving. London: Academic Press.

Schoenfeld, A. H. (1987). What's all the fuss about metacognition? In A. H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 189-215). Hillsdale: Lawrence Erlbaum.

Schoenfeld, A. (1992). Learning to think mathematically: problem solving, metacognition and sense making in mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 334-370). New York: Macmillan.

Sternberg, R. (1996). What is mathematical thinking? In R. Sternberg & T. Ben-Zeev (Eds.), The nature of mathematical thinking (pp. 303-318). Mahwah: Lawrence Erlbaum.

Stillman, G. A. & Galbraith, P. L. (1998). Applying mathematics with real world connections: metacognitive characteristics of secondary students. Educational Studies in Mathematics, 36 (2), 157-194. https://doi.org/10.1023/A:1003246329257

Stillman, G. & Mevarech, Z. (2010). Metacognition research in mathematics education: from hot topic to mature field. ZDM, 42 (2), 145-148. https://doi.org/10.1007/s11858-010-0245-x

Stel, M. van der, Veenman, M. V. J., Deelen, K. & Haenen, J. (2010). The increasing role of metacognitive skills in math: a cross-sectional study from a developmental perspective. ZDM, 42 (2), 219-299. https://doi.org/10.1007/s11858-009-0224-2

Veenman, M. V. J., Elshout, J. J. & Meijer, J. (1997). The generality vs. domain specificity of metacognitive skills in novice learning across domains. Learning and Instruction, 7, 187-209. https://doi.org/10.1016/S0959-4752(96)00025-4

Viitala, H. (2013). Alex's world of mathematics. In M. S. Hannula, P. Portaankorva-Koivisto, A. Lain. & L. Näveri (Eds.), Current state of research on mathematical beliefs XVIII: proceedings of MAVI-18 (pp. 71-82). Helsinki: The Finnish Research Association for Subject Didactics.

Viitala, H. (2015a). Two Finnish girls and mathematics: similar achievement level, same core curriculum, different competences. LUMAT, 3 (1), 137-150. https://doi.org/10.31129/lumat.v3i1.1056

Viitala, H. (2015b). Emma's mathematical thinking, problem solving and affect. In K. Krainer & N. Vondrová (Eds.), Proceedings of CERME9 (pp. 1294-1300). Retrieved from https://hal.archives-ouvertes.fr/hal-01287360/

Vinner, S. (2004). Mathematical thinking, values and theoretical framework. In M. J. Høines & A. B. Fuglestad (Eds.), Proceedings of the 28th conference of the International Group for the Psychology of Mathematics Education (Vol 1, pp. 126-127). Bergen: Bergen University College.

Välijärvi, J. (2014). Osaaminen kestävällä perustalla - Suomen PISA-tulosten kehitys vuosina 2000-2009 (Tilannekatsaus helmikuu 2014) [Know-how on solid ground - the development of Finnish PISA results in 2000-2009 (Review in February 2014)]. Retrieved from http://www.oph.fi/julkaisut/2014/osaaminen_kestavalla_perustalla

Watson, A. (2000). Mathematics teachers acting as informal assessors: practices, problems and recommendations. Educational Studies in Mathematics, 41 (1), 69-91. https://doi.org/10.1023/A:1003933431489

Watt, H. M. G. (2005). Attitudes to the use of alternative assessment methods in mathematics: a study with secondary mathematics teachers in Sydney, Australia. Educational Studies in Mathematics, 58 (1), 21-44. https://doi.org/10.1007/s10649-005-3228-z

Zan, R., Brown, L., Evans, J. & Hannula, M. S. (2006). Affect in mathematics education: an introduction. Educational Studies in Mathematics, 63 (2), 113-121. https://doi.org/10.1007/s10649-006-9028-2

Downloads

Published

2017-06-01

How to Cite

Viitala, H. (2017). A tool for understanding pupils’ mathematical thinking. NOMAD Nordic Studies in Mathematics Education, 22(2), 5–31. https://doi.org/10.7146/nomad.v22i2.148794

Issue

Section

Articles