Linguistic features and their function in different mathematical content areas in TIMSS 2011

Authors

  • Ida Bergvall
  • Jenny Wiksten Folkeryd
  • Caroline Liberg

Abstract

This study investigates how written language is used as a resource to express meaning in different mathematical content areas; algebra, geometry, statistics and arithmetic, in the Swedish version of TIMSS 2011. Based on previous research we identify linguistic features that fulfill the function of expressing four central meaning dimensions of written academic language in general and in language used in school mathematics in particular; Packing, Precision, Personification and Presentation of information. These four meaning dimensions constitute the foundation for the analysis. The results show differences in how the language is used within the different mathematical content areas in TIMSS 2011. These differences consist primarily of to what extent the language is subject specific and used to express the specific mathematics in each of the four content areas. In this way the notion of a single mathematical language is also challenged.

References

Abel, K. & Exley, B. (2008). Using Halliday's functional grammar to examine early years worded mathematics texts. Australian Journal of Language and Literacy, 31 (3), 227-241.

Barwell, R. (2005). Working on arithmetic word problems when English is an additional language. British Educational Research Journal, 31 (3), 329-348. https://doi.org/10.1080/01411920500082177

Björnsson, C. H. (1968). Läsbarhet [Readability]. Stockholm: Bokförlaget Liber.

Borg, E. & Westerlund, J. (2006). Statistik för beteendevetare [Statistics for social science]. Stockholm: Liber.

Christie, F. (2012). Language education throughout the school years: a functional perspective. Language Learning, 62 (Supplement 1), 1-247.

Coffin, C. & Donohue, J. (2014). A Language as social semiotic-based approach to teaching and learning in higher education. Language Learning, 64 (1), 1-308. https://doi.org/10.1111/lang.12036

Edling, A. (2006). Abstraction and authority in textbooks: the textual paths towards specialized language. Uppsala: Acta Universitatis Upsaliensis.

Fang, Z., Schleppegrell, M. & Cox, B. E. (2006). Understanding the language demands of schooling: nouns in academic registers. Journal of Literacy Research, 38 (3), 247-273. https://doi.org/10.1207/s15548430jlr3803_1

Fang, Z. (2006). The language demands of science reading in middle school, International Journal of Science Education, 28 (5), 491-520. https://doi.org/10.1080/09500690500339092

Fredlund, T. (2015). Using a social semiotic perspective to inform the teaching and learning of physics. Uppsala: Acta Universitatis Upsaliensis.

Geijerstam, Å. af (2006). Att skriva i naturorienterande ämnen i skolan [Writing in the science subjects at school] (Ph. D. dissertation). Institutionen för lingvistik och filologi, Uppsala universitet.

Halliday, M. A. K. & Hasan, R. (1989). Language, context, and text: aspects of language in a social-semiotic perspective (2nd ed.). Oxford University Press.

Halliday, M. A. K. & Matthiessen, C. M. I. M. (2004). An introduction to functional grammar (3rd ed.). London: Arnold.

Hellspong, L. & Ledin, P. (1997). Vägar genom texten: handbok i brukstextanalys. [Roads through the text: a manual to text analysis]. Lund: Studentlitteratur.

Herbel-Eisenmann, B. A. (2007). From intended curriculum to written curriculum: examining the "voice" of a mathematics textbook. Journal for Research in Mathematics Education, 38 (4), 344-369.

Lemke, J. L. (1990). Talking science: language, learning, and values. Norwood: Ablex.

Liberg, C. & Forsbom, E. (2009). Text and language in assessment of mathematics and science. In A. Saxena & Å. Viberg (Eds.), Multilingualism. Proceedings of the 23rd Scandinavian Conference of Linguistics (pp. 328-332). Acta Universitatis Upsaliensis. Studia Linguistica Upsaliensia 8.

Magnusson, U. & Kokkinakis, S. J. (2009). Quantitative measures on student texts. Papers from the ASLA symposium in Stockholm, 7-8 November, 2008. ASLA:s skriftserie, 22, 43-56.

Martin, J. R. (1991). Nominalization in science and humanities: distilling knowledge and scaffolding text. In E. Ventola (Ed.), Functional and systemic linguistics (pp. 307-337). Berlin: Mouton de Gruyter. https://doi.org/10.1515/9783110883527.307

Morgan, C. (1998). Writing mathematically: the discourse of investigation. London: Falmer Press.

Morgan, C., Craig, T., Schuette, M. & Wagner, D. (2014). Language and communication in mathematics education: an overview of research in the field. ZDM Mathematics Education, 46 (6), 843-853. https://doi.org/10.1007/s11858-014-0624-9

Mühlenbock, K. H. (2013). I see what you mean: assessing readability for specific target groups. Institutionen för svenska språket, Göteborgs universitet.

O'Halloran, K. L. (2005). Mathematical discourse: language, symbolism and visual images. London: Bloomsbury UK.

Palm, T. (2002). The realism of mathematical school tasks: features and consequences (Ph.D. dissertation). Department of Mathematics, Umeå University.

Schleppegrell, M. J. (2001). Linguistic features of the language of schooling, Linguistics and Education, 12 (4), 431-459. https://doi.org/10.1016/S0898-5898(01)00073-0

Schleppegrell, M. J. (2004). The language of schooling: a functional linguistics perspective. London: Lawrence Erlbaum Associates. https://doi.org/10.4324/9781410610317

Schleppegrell, M. J. (2007). The linguistic challenges of mathematics teaching and learning: a research review. Reading & Writing Quarterly, 23 (2), 139-159. https://doi.org/10.1080/10573560601158461

Shanahan, T. & Shanahan, C. (2012). What is disciplinary literacy and why does it matter? Topics in Language Disorders, 32 (1), 7-18. https://doi.org/10.1097/TLD.0b013e318244557a

Shreyar, S., Zolkower, B. & Pérez, S. (2010). Thinking aloud together: a teacher's semiotic mediation of a whole-class conversation about percents. Educational Studies in Mathematics, 73, 21-53. https://doi.org/10.1007/s10649-009-9203-3

Sfard, A. (1991). On the dual nature of mathematical conceptions: reflections on processes and objects as different sides of the same coin, Educational Studies in Mathematics, 22, 1-36. https://doi.org/10.1007/BF00302715

Skolverket. (2012). TIMSS 2011. Svenska grundskoleelevers kunskaper i matematik och naturvetenskap i ett internationellt perspektiv. [Swedish primary school students' knowledge of mathematics and science in an international perspective]. Stockholm: Skolverket.

Skolverket. (2014). TIMSS 2011. Uppgifter i matematik, årskurs 8. [TIMSS 2011. Tasks in mathematics, grade 8] (Rapport 401). Stockholm: Fritzes.

Unsworth, L. (1997). Scaffolding reading of science explanations: accessing the grammatical and visual forms of specialized knowledge. Literacy, 31 (3), 30-42. https://doi.org/10.1111/1467-9345.00061

Wagner, D., Dicks, J. & Kristmanson, P. (2015). Students' language repertoires for prediction. Mathematics Enthusiast, 12 (1-3), 246-261. https://doi.org/10.54870/1551-3440.1346

Veel, R. (1997). Learning how to mean-scientifically speaking: apprenticeship into scientific discourse in the secondary school. In F. Christie & J. R. Martin (Eds.), Genre and institutions: social processes in the workplace and school (pp. 161-195). London: Cassell.

Veel, R. (1999). Language, knowledge and authority in school mathematics. In F. Christie (Ed.), Pedagogy and the shaping of consciousness: linguistic and social processes (pp. 185-216). New York: Cassell.

Österholm, M. & Bergqvist, E. (2013). What is so special about mathematical texts? Analyses of common claims in research literature and of properties of textbooks. ZDM Mathematics Education, 45 (5), 751-763. https://doi.org/10.1007/s11858-013-0522-6

Downloads

Published

2024-11-19

How to Cite

Bergvall, I., Wiksten Folkeryd, J., & Liberg, C. (2024). Linguistic features and their function in different mathematical content areas in TIMSS 2011. NOMAD Nordic Studies in Mathematics Education, 21(2), 45–68. Retrieved from https://tidsskrift.dk/NOMAD/article/view/148726

Issue

Section

Articles