Introduksjon av algebra i matematikkbøker for ungdomstrinnet i Norge
Abstract
I denne artikkelen presenterer vi funnene fra en analyse av introduksjonskapitlet i algebra i seks ulike lærebøker. Introduksjonen til bokstaver som symbol for variable størrelser varierer med hensyn til klassetrinn, mengde og kontekst. Gjennom en induktiv kvalitativ innholdsanalyse karakteriserer vi mangelfulle sider ved kapitlene. Hovedfunnene er at variabelaspektet ikke kommer tydelig frem, og at en i liten grad benytter mulighetene til å bygge videre på tallære. I tillegg inneholder lærebøkene feilaktige formuleringer, illustrasjoner og matematiske resonnement, som legger forholdene til rette for utvikling av misoppfatninger.
References
Alseth, B., Breiteig, T. & Brekke, G. (2003). Endringer og utvikling ved R97 som bakgrunn for videre planlegging og justering - matematikkfaget som kasus. Notodden: Telemarksforsking.
Bakke, B. & Bakke, I. H. (2006). Grunntall 8. Matematikk for ungdomstrinnet. Drammen: Elektronisk undervisningsforlag.
Bell, A. (1995). Purpose in school algebra. Journal of Mathematical Behaviour, 14 (1), 41-73. https://doi.org/10.1016/0732-3123(95)90023-3
Bierhoff, H. (1996). Making the foundations of numeracy: a comparison of primary school textbooks in Britain, Germany and Switzerland. Teaching Mathematics and its Applications, 15 (4), 141-160. https://doi.org/10.1093/teamat/15.4.141
Bjørnestad, Ø., Kongelf, T. R. & Myklebust, T. (2013). Alfa - matematikk for grunnskolelærerutdanningene 1-7 og 5-10 (2. utgave). Bergen: Fagbokforlaget Vigmostad & Bjørke.
Bryman, A. (2008). Social research methods (third edition). Oxford University Press.
Charbonneau, L. (1996). From Euclid to Descartes: algebra and its relation to geometry. I N. Bednarz, C. Kieran & Lee, L. (red.), Approaches to algebra: perspectives for research and teaching (s. 15-37). Dordrecht: Kluwer Academic. https://doi.org/10.1007/978-94-009-1732-3_2
Chávez-López, O. (2003). From the textbook to the enacted curriculum: textbook use in the middle school mathematics classroom. University of Missouri. Hentet fra http://zeta.math.utsa.edu/~hvz231/dissertation/dissertation.pdf
Costello, J. (1991). Teaching and learning mathematics 11-16. London: Routledge. https://doi.org/10.1016/0260-6917(91)90098-U
Crawford, A. R. (2001). Developing algebraic thinking: past, present and future. I H. Chick, K. Stacey, J. Vincent & J. Vincent (red.), The future of the teaching and learning of algebra. Proceedings of the 12th ICMI study conference (Vol. 1, s. 192-198). University of Melbourne.
Christensen, A. S. (2007). Kode X 9A. Matematikk for ungdomstrinnet. Oslo: Forlaget fag og kultur.
Danielsen, I. J., Skaar, K. & Skaalvik, E. M. (2007). De viktige få: analyse av elevundersøkelsen 2007. Kristiansand: Oxford Research.
Donoghue, E. F. (2003). Algebra and geometry textbooks in twentieth-century America. I G. Stanic & J. Kilpatrick (red.), A history of school mathematics (Vol. 1, s. 329-398). Reston: NCTM.
Elo, S. & Kyngäs, H. (2008). The qualitative content analysis process. Journal of Advanced Nursing, 62 (1), 107-115. https://doi.org/10.1111/j.1365-2648.2007.04569.x
Fan, L. & Kaeley, G. S. (2000). The influence of textbook on teaching strategies: an empirical study. Mid-Western Educational Researcher, 13 (4), 2-9.
Freeman, D. J. & Porter, A. C. (1989). Do textbooks dictate the content of mathematics instruction in elementary schools? American Educational Research Journal, 26 (3), 403-421. https://doi.org/10.3102/00028312026003403
Goodlad, J.I. et al. (1979). Curriculum inquiry: the study of curriculum practice. New York: McGraw-Hill Book Company.
Grønmo, L. S., Bergem, O. K., Kjærnsli M., Lie S. & Turmo A. (2003). Hva i all verden har skjedd i realfagene? Norske elevers prestasjoner i matematikk og naturfag i TIMSS 2003. Institutt for lærerutdanning og skoleutvikling, Universitet i Oslo.
Grønmo, L. S. & Onstad, T. (2009). Tegn til bedring. Norske elevers prestasjoner i matematikk og naturfag i TIMSS 2007. Oslo: Unipub.
Guldbrandsen, J. E., Melhus, A. & Løchsen, R. (2006). Nye Mega 8B. Matematikk for ungdomsstrinnet. Oslo: N. W. Damm & Søn.
Hagen, M. B., Carlsson, S., Hake, K. B. & Öberg, B. (2006). Tetra 8. Matematikk for ungdomstrinnet. Oslo: Det norske samlaget.
Hjardar, E. & Pedersen, J.-E. (2006). Faktor 1. Grunnbok. Matematikk for ungdomstrinnet. Oslo: Cappelen Damm.
Hsieh, H. F. & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative Health Research, 15 (9), 1277-1288. https://doi.org/10.1177/1049732305276687
Johansson, M. (2006). Textbooks as instruments. Three teachers' way to organize their mathematics lessons. Nordic Studies in Mathematics Education, 11 (3), 5-30.
Jakobsson-Åhl, T. (2006). Algebra in upper secondary mathematics: a study of a selection of textbooks used in the years 1960-2000 in Sweden. Luleå tekniska universitet.
Jakobsson-Åhl, T. (2008). Word problems in upper secondary algebra in Sweden over the years 1960-2000. Nordic Studies in Mathematics Education, 13 (1), 7-28.
Kendal, M. & Stacey, K. (2004). Algebra: a world of difference. In K. Stacey, H. Chick & M. Kendal (red.), The future of the teaching and learning of algebra, the 12th ICMI study (s. 329-346). Dordrecht: Kluwer Academic. https://doi.org/10.1007/1-4020-8131-6_13
Kieran, C. (1990). Cognitive processes involved in learning school algebra. I P. Nesher & J. Kilpatrick (red.), Mathematics and cognition: a research synthesis by the international group for the Psychology of Mathematics Education (s. 97-112). Cambridge University Press. https://doi.org/10.1017/CBO9781139013499.007
Kieran, C. (1996). The changing face of school algebra. I C. Alsina, J. Alvarez, B. Hodgson, C. Laborde & A. Pérez (red.), Eighth international congress on mathematical education: selected lectures (s. 271-290). Seville: S.A.E.M. Thales.
Kieran, C. (2004). The core of algebra: reflections on its main activities. I K. Stacey, H. Chick & M. Kendal (red.), The future of the teaching and learning of algebra, the 12th ICMI study (s. 21-34). Dordrecht: Kluwer Academic. https://doi.org/10.1007/1-4020-8131-6_2
Kieran, C. (2007). Learning and teaching of algebra at the middel school through college levels: building meaning for symbols and their manipulations. I F. Lester (red.), Second handbook of research on mathematics teaching and learning (s. 707-762). Charlotte: Information Age.
Kongelf, T. R. (2011). What characterises the heuristic approaches in mathematics textbooks used in lower secondary schools in Norway? Nordic Studies in Mathematics Education, 16 (4), 5-44.
KUF. (1987). Mønsterplanen for grunnskolen. Oslo: Aschehoug.
KUF. (1996). Læreplanverket for den 10-årige grunnskolen. Oslo: Nasjonalt læremiddelsenter.
Küchemann, D. (1981). Algebra. I K. Hart (red.), Children's understanding of mathematics (s. 11-16). London: John Murray.
Lins, R. (1990). A framework for understanding what algebraic thinking is. I G. Booker, P. Cobb & T. N. Mendicuti (red.), Proceedings of the fourteenth PME conference for the international group for the Psychology of Mathematics Education (Vol. 2, s. 93-100). Oaxtepec: Program committee.
Lee, L. (2001). Early algebra - but which algebra? I H. Chick, K. Stacey, J. Vincent & J. Vincent (red.), The future of teaching and learning of algebra. Proceedings of the 12th ICMI study conference (Vol. 2, s. 392-399). University of Melbourne.
MacGregor, M. (2004). Goals and content of an algebra curriculum for the compulsory years of schooling. I K. Stacey, H. Chick & M. Kendal (red.), The future of teaching and learning of algebra. The 12th ICMI Study (s. 313-328). Boston: Kluwer Academic.
Mason, J. (1996). Expressing generality and roots of algebra. I N. Bednarz, C. Kieran & L. Lee (red.), Approaches to algebra: perspectives for research and teaching (s. 65-86). Dordrecht: Kluwer Academic. https://doi.org/10.1007/978-94-009-1732-3_5
Mosvold, R. (2001). Det genetiske prinsipp i matematikkdidaktikk (Hovedfagsoppgave). Kristiansand: Høgskolen i Agder.
Niss, M. & Jensen, T. H. (2002). Kompetencer og matematiklæring. Ideer og inspiration til udvikling af matematikundervisning i Danmark. København: Uddannelseministeriet. Hentet fra http://pub.uvm.dk/2002/kom/
Pehkonen, E. (1995). On pupils' reactions to the use of open-ended problems in mathematics. Nordic Studies in Mathematics Education, 3 (4), 43-57.
Pepin, B. & Haggarty, L. (2001). Mathematics textbooks and their use in English, French and German classrooms: a way to understand teaching and learning cultures. Zentralblatt für Didaktik der Mathematik, 33 (5), 158-175. https://doi.org/10.1007/BF02656616
Pepin, B. & Haggarty, L. (2002). An investigation of mathematics textbooks and their use in English, French and German classrooms: who gets an opportunity to learn what? British Educational Research Journal, 28 (4), 567-590. https://doi.org/10.1080/0141192022000005832
Reys, B. J., Reys, R. R. & Chávez, O. (2004). Why mathematics textbooks matter. Educational Leadership, 61 (5), 61-66.
Rezat, S. & Sträßer, R. (2013). Methodologies in Nordic research on mathematics textbooks. I B. Grevholm, P. S. Hundeland, K. Juter, K. Kislenko & P.-E. Persson (red.), Nordic research in didactics of mathematics: past, present and future (s. 469-482). Oslo: Cappelen Damm.
Robitaille, D. F. & Travers, K. J. (1992). International studies of achievement in mathematics. I D. A. Grouws (red.), Handbook of research on mathematics education (s. 687-709). New York: Macmillan.
Röj-Lindberg, A.-S. (1999). Läromedel och undervisning i matematik på högstadiet. En kartläggning av läget i Svenskfinland. Vasa: Svenskfinlands läromedelscenter.
Schoenfeld, A.H. (1988). When good teaching leads to bad results: the disasters of "well-taught" mathematics courses. Educational Psychologist, 23 (2), 145-66. https://doi.org/10.1207/s15326985ep2302_5
Schmidt, W. H., McKnight C. C., Valverde G. A., Houang R. I. & Wiley D. E. (1996). Many visions, many aims: a cross-national investigation of curricular intentions in school mathematics. London: Kluwer Academic Publishers. https://doi.org/10.1007/978-94-011-5786-5
Schmidt, W. H., McKnight, C. C., Houang, R. T., Wang, H., Wiley, D. E. et al. (2001). Why schools matter: a cross-national comparison of curriculum and learning. San Francisco: Jossey-Bass.
Sfard, A. & Linchevski, L. (1994). The gains and pitfalls of reification - the case of algebra. Educational Studies in Mathematics, 26, 191-228. https://doi.org/10.1007/BF01273663
Sutherland, R. (2002). A comparative study of algebra curricula. London: Qualifications and curriculum authority.
Torkildsen, S. H. & Maugesten. M. (2006). Sirkel 8B. Grunnbok. Matematikk for ungdomstrinnet. Oslo: H. Aschehoug & Co.
UFD. (2005). Kunnskapsløftet. Hentet fra http://www.udir.no/upload/ larerplaner/Fastsatte_lareplaner_for_Kunnskapsloeftet/Grunnskole_og_ gjennomgaende/matematikk_010810.rtf
Utdanningsdirektoratet. (2005). Kartlegging av læremidler og læremiddelpraksis. Hentet fra http://www.skolenettet.no/moduler/templates/Module_Article.aspx?id=37694&epslanguage=NO
Utdanningsdirektoratet. (2014). Matematikk i norsk skole anno 2014. Faggjennomgang av matematikkfagene - rapport fra ekstern arbeidsgruppe oppnenvt av Utdanningsdirektoratet. Hentet fra http://www.udir.no/PageFiles/89051/Matematikk_norsk_skole_2014_rapport_ekstern_arbeidsgruppe.pdf?epslanguage=no
Wheeler, D. (1996). Backwards and forwards: reflections on different approaches to algebra. I N. Bednarz, C. Kieran & L. Lee (red.), Approaches to algebra. Perspectives for research and teaching (s. 317-325). Dordrecht: Kluwer Publishers. https://doi.org/10.1007/978-94-009-1732-3_21
Wu, H. (2001). How to prepare students for algebra. American Educator, 25(2), 10-17.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.