Students’ conceptions about the formula for a rectangle’s area and some similarities to its historical context
DOI:
https://doi.org/10.7146/nomad.v19i2.148631Abstract
In this paper, we focus on a debate between grade 6 students about the formula for a rectangle’s area, emerging during a 2-hours teaching, and raising questions about the possibility of using history in order to design a hypothetical learning/teaching trajectory of rectangle’s area, and we analyse students’ conceptions/misconceptions in relation to the historical context of area measurement.
References
Arnauld, A. (1667). Nouveaux éléments de géométrie. Paris: Savreux. Bachelard, G. (1938). La formation de l'esprit scientifique. Paris: Vrin.
Bakker, A. (2004). Design research in statistics education - on symbolizing and computer tools (Ph.D. Thesis). Utrecht: The Freudenthal Inistitute.
Barbin, E.(2010). Evolving geometric proofs in the seventeenth century: from icons to symbols. In G. Hanna et al. (Eds.), Explanation and proof in mathematics (pp. 237-251): Dordrecht: Springer https://doi.org/10.1007/978-1-4419-0576-5_16
Battista, M., Clements, D. H., Arnoff, J., Battista, K. & Auken Borrow, C. van (1998). Students' spatial structuring of 2D arrays of squares. Journal for Research in Mathematics Education, 29, 503-532. https://doi.org/10.2307/749731
Bonotto, C. (2003). About students' understanding and learning of the concept of surface area. In D. H. Clements & G. Bright (Eds.), Learning and teaching measurement (2003 Yearbook) (pp. 157-167). Reston: NCTM.
Bos, H. & Reich, K. (1990). Der doppelte Auftakt zur frlihneuzeitUchen Algebra: Viete und Descartes. In E. Scholz (Ed.), Geschichte der Algebra (pp. 183-234). Mannheim: BibHographisches Institut.
Bos, H. (2001). Redefining geometrical exactness: Descartes' transformation of the early modem concept of construction. New York: Springer. https://doi.org/10.1007/978-1-4613-0087-8
Brousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht: Kluwer Academic
Bruner, J. S. (1996). The process of education. Harvard University Press. Crombie, A. C. (1995) Commitments and styles of european scientific thinking. History of Sciences, 33, 225-238. https://doi.org/10.1177/007327539503300204
Grattan-Guinness, I. (1996). Numbers, magnitudes, ratios and proportions in Euclid's elements. How did he handle them? Historia Mathematica, 23, 355-375. https://doi.org/10.1006/hmat.1996.0038
Freudenthal, H. (1991). Revisiting mathematics education-China lectures. Dordrecht: Kluwer Academic.
Hewitt, D. (1994). The principle of economy in the learning and teaching of mathematics (Ph.D. thesis). The Open University.
Hewitt, D. (1999). Arbitrary and necessary: a way of viewing the mathematics curriculum. For the Learning of Mathematics, 19 (3), 2-9.
Hewitt, D. (2001). Arbitrary and necessary: educating awareness. For the Learning of Mathematics, 21 (2), 37-49.
Ho, W. K. (2009). Using of history of mathematics in the teaching and learning of mathematics in Singapore. In Proceedings of 1st Raffles International Conference on Education (pp. 1-38). Singapore: Raffles Junior College.
Huang, H. & Witz, K. (2011). Developing children's conceptual understanding of area measurement: a curriculum and teaching experiment. Learning and instruction, 21, 1-13. https://doi.org/10.1016/j.learninstruc.2009.09.002
Jankvist, U. T. (2009a). Using history as a "goal" in mathematics education (Ph.D. thesis). IMFUFA, Roskilde University.
Jankvist, U. T. (2009b). A categorization of the "whys" and "hows" of using history in mathematics education. Educational Studies in Mathematics, 71 (3), 235-261. https://doi.org/10.1007/s10649-008-9174-9
Kordaki, M. & Balomenou, A. (2006). Challenging students to view the concept of area in triangles in a broad context: exploiting the features of Cabri-II. International Journal of Computers for Mathematical Learning, 11, 99-135. https://doi.org/10.1007/s10758-005-5380-z
Krainer, K. (2008). Researchers and their roles in teacher education. Journal of Mathematics Teacher Education, 11, 253-257. https://doi.org/10.1007/s10857-008-9086-8
Lamy, B. (1695). Les éléments de géométrie ou de la mesure du corps (2nd ed.). Paris: Pralard.
Lehrer, R. (2003). Developing understanding of measurement. In J. Kilpatrick, W. G. Martin & D. E. Schifter (Eds.), A research companion to principles and standards for school mathematics (pp. 179-192). Reston: NCTM.
Lehrer, R., Jenkins, M. & Osana, H. (1998). Longitudinal study of children's reasoning about space and geometry. In R. Lehrer & D. Chazan (Eds.), Designing learning environments for developing understanding of geometry and space (pp. 137-167). Mahwah: Lawrence Erlbaum.
Lehrer, R., Jaslow, L. & Curtis, C. L. (2003). Developing and understanding of measurement in the elementary grades. In D. H. Clements (Ed.), Learning and teaching measurement (pp. 100 -121). Reston: NCTM.
Liakopoulou, M. (2011). The professional competence of teachers: Which qualities, attitudes, skills and knowledge contribute to a teacher's effectiveness? International Journal of Humanities and Social Science, 1(21), 66-78.
MacLennan, B. (2005). From Pythagoras to the digital computer: the intellectual roots of symbolic artificial intelligence (Manuscript under preparation). [see http://web.eecs.utk.edu/~mclennan/Classes/UH267/handouts/WFI/front-matter.pdf]
Ministry of Education (2011). New mathematics curriculum for the compulsory education (primary and secondary school) [in Greek]. Greek Ministry of Education.
Mumford, D. (2010). What's so baffling about negative numbers? A cross- cultural comparison. In C. S. Seshadri (Ed.), Studies in the history of Indian mathematics. New Delhi: Hindustan Book Agency. https://doi.org/10.1007/978-93-86279-49-1_6
Otte, M. (1994). Historiographical trends in the social history of mathematics and science. In K. Gavroglu et al. (Eds.), Trends in the historiography of sciences (pp. 295-315). Amsterdam: Kluwer Academic Publishers. https://doi.org/10.1007/978-94-017-3596-4_22
Outhred, L. & Mitchelmore, M. (1992). Representation of area: a pictorial perspective. In W. Geeslin & K. Graham (Eds.), Proceedings of the 16th annual conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 194-201). Durham: Program Committee.
Outhred, L. & Mitchelmore, M. (2000). Young children's intuitive understanding of rectangular area measurement. Journal for Research in Mathematics Education, 31 (2), 144-167. https://doi.org/10.2307/749749
Paschos, T. & Vlachos, A. (2010). The professional development of mathematics teachers. A comparative presentation of professional development programs in Europe. In Proceedings of the 27th conference of Greek Mathematical Society (pp. 345-364). Chalkida: Greek Mathematical Society.
Piaget, J. & Garcia, R. (1989). Psychogenesis and the history of science. Columbia New York: University Press.
Radford, L. (1997). On psychology, historical epistemology, and the teaching of mathematics: towards a socio-cultural history of mathematics. For the Learning of Mathematics, 17 (1), 26-33.
Radford, L. (2000a). Signs and meanings in students' emergent algebraic thinking: a semiotic analysis. Educational Studies in Mathematics, 42 (3), 237-268. https://doi.org/10.1023/A:1017530828058
Radford, L. (2000b). Historical formation and student understanding of mathematics. In J. Fauvel & J. van Maanen (Eds.), History in mathematics education: an ICMI Study (pp. 143 - 170). Dordrecht: Kluwer.
Reynolds, A. & Wheatley, G. H. (1996). Elementary students' construction and coordination of units in an area setting. Journal for Research in Mathematics Education, 27 (5), 564-581. https://doi.org/10.2307/749848
Sarama, J. & Clements, D. H. (2009). Early childhood mathematics education research: Learning trajectories for young children. New York: Routledge. https://doi.org/10.4324/9780203883785
Schubring, G. (1978). Das genetische Prinzip in der Mathematik-Didaktik. Stuttgart: Klett-Cotta.
Schubring, G. (2005). A case study in generalisation: the notion of multiplication. In M. Hoffmann, J. Lenhard & F. Seeger (Eds.), Activity and sign - grounding mathematics education. Festschrift for Michael Otte (pp. 275- 285). New York: Springer.
Sfard, A. (2008). Thinking as communicating. New York: Cambridge University Press. https://doi.org/10.1017/CBO9780511499944
Stephan, M. & Clements, D. H. (2003). Linear and area measurement in prekindergarten to grade 2. In D. H. Clements & G. Bright (Eds.), Learning and teaching measurement (2003 Year book) (pp. 3-16). Reston: NCTM.
Thomaidis, Y. & Tzanakis, C. (2007). The notion of historical "parallelism" revisited: historical evolution and students' conception of the order relation on the numberline. Educational Studies in Mathematics, 66 (2), 165-183 https://doi.org/10.1007/s10649-006-9077-6
Tirosh, D & Graeber, A (2003). Challenging and changing mathematics teaching classroom practices. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick & F. K. S. Leung (Eds.), Second international handbook of mathematics education (pp. 643-687). Dordrecht: Kluwer. https://doi.org/10.1007/978-94-010-0273-8_22
Toeplitz, O. (1927). Das Problem der Universitätsvorlesungen über Infinitesimalrechnung und ihrer Abgrenzung gegenüber der Infinitesimalrechnung an den höheren Schulen. Jahresbericht der Deutschen Mathematiker-Vereinigung, XXXVI, 88-100.
Tripp, D. (1993). Critical incidents in teaching. Developing professional judgement. London: Routledge.
Vygotsky, L. S. & Luria, A. (1994). Tool and symbol in child development. In R. van der Veer & J. Valsiner (Eds.), The Vygotsky reader. (pp. 99-174). Oxford: Blackwell.
Unguru, S. & Rowe, D. (1981/1982). Does the quadratic equation have Greek roots? Libertas mathematics, 1, 1-49; 2, 1-62.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.