A comparison of three frameworks for measuring knowledge for teaching mathematics

Authors

  • Hege Kaarstein

DOI:

https://doi.org/10.7146/nomad.v19i1.148626

Abstract

This paper presents a comparison of three different frameworks used in research projects aimed at measuring knowledge for teaching mathematics. As the included cases all build on Shulman’s theoretical framework for teacher knowledge, in which the categories subject matter content knowledge (CK) and pedagogical content knowledge (PCK) are central, his framework was used as a reference. To enable comparison across the frameworks, each framework’s categories were analysed and organized taxonomically. The results indicate agreement on a superordinate level. However, important differences were found in the operationalisation of the basic level categories mathematics CK and mathematics PCK. As the basic level normally represents clear communication of categories, this paper suggests that more attention to the operationalisation of basic level categories is needed.

References

Aase, T. H. (1997). Tolkning av kategorier. Observasjon, begrep og kategori [Interpretation of categories. Observation, concept and category]. In E. Fossåskaret, O. L. Fuglestad & T. H. Aase (Eds.), Metodisk feltarbeid. Produksjon og tolkning av kvalitative data [Methodological field work. Production and interpretation of qualitative data] (pp. 143-166). Oslo: Universitetsforlaget.

Ball, D. L. (Ed.). (1999). Crossing boundaries to examine the mathematics entailed in elementary teaching. In T. Lam (Ed.), Contemporary Mathematics (pp.15-36). Providence: American Mathematical Society. https://doi.org/10.1090/conm/243/3681

Ball, D. L. & Hill, H. C. (2008). Mathematical Knowledge for Teaching (MKT). Retrieved from http://sitemaker.umich.edu/lmt/files/LMT_sample_items.pdf

Ball, D. L., Thames, M. H. & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59 (5), 389-407. https://doi.org/10.1177/0022487108324554

Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, et al. (2010). Teachers' mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47 (1), 133-180. https://doi.org/10.3102/0002831209345157

Blalock, H. M. (1968). The measurement problem: a gap between the languages of theory and research. In H. M. Blalock & A. B. Blalock (Eds.), Methodology in social research. New York: McGraw-Hill.

Blömeke, S., Felbrich, A., Müller, C., Kaiser, G. & Lehmann, R. (2008). Effectiveness of teacher education. ZDM, 40 (5), 719-734. https://doi.org/10.1007/s11858-008-0096-x

Blömeke, S., Houang, R. T. & Suhl, U. (2011) TEDS-M: diagnosing teacher knowledge by applying multidimensional item response theory and multiple-group models. IERI Monograph Series: Issues and Methodologies in Large-Scale Assessments, 4, 109-129.

Breiteig, T. & Grevholm, B. (2010). Longitudinal study as an instrument for development in mathematics teaching and mathematics education research. In B. Sriraman, C. Bergsten, S. Goodchild, G. Pálsdóttir, B. Dahl & L. Haapasalo (Eds.), The first sourcebook on nordic research in mathematics education (pp. 125-138). Charlotte: Information Age Publishing.

Brese, F. & Tatto, M. T. (2012). TEDS-M 2008 user guide for the international database (Supplement 4). Amsterdam: IEA.

Cresswell, J. W. & Maietta, R. C. (2002). Qualitative research. In D. C. Miller & N. J. Salkind (Eds.), Handbook of research design and social measurement (6 ed.) (pp. 143-197). Thousand Oaks: Sage Publications.

Crocker, L. & Algina, J. (2006). Introduction to classical & modern test theory. Mason: Cengage Learning.

Dahl, B. (2010). Can two different types of mathematics teacher preparation in Denmark integrate? In B. Sriraman, C. Bergsten, S. Goodchild, G. Pálsdóttir, B. Dahl & L. Haapasalo (Eds.), The first sourcebook on nordic research in mathematics education (pp. 613-625). Charlotte: Information Age.

Danish Ministry of Science, Innovation and Higher Education. (2012). Reform af læreruddannelsen [Teacher Education Reform]. Retrieved from http://fivu.dk/lovstof/politiske-aftaler/reform-af-laereruddannelsen/reform-af-laereruddannelsen.pdf

Downing, S. M. (2006). Twelve steps for effective test development. In S. M. Downing & T. M. Haladyna (Eds.), Handbook of test development (pp. 3-25). London: Lawrence Erlbaum.

Ellis, H. C. & Hunt, R. R. (1993). Fundamentals of cognitive psychology. Madison: Brown & Benchmark.

Grevholm, B. (2010). Research on mathematics education in Sweden. In B. Sriraman, C. Bergsten, S. Goodchild, G. Pálsdóttir, B. Dahl & L. Haapasalo (Eds.), The first sourcebook on nordic research in mathematics education (pp. 347-362). Charlotte: Information Age Publishing.

Gunnarsdóttir, G. H. & Pálsdóttir, G. (2010). Mathematics teacher education at Iceland University of Education. In B. Sriraman, C. Bergsten, S. Goodchild, G. Pálsdóttir, B. Dahl & L. Haapasalo (Eds.), The first sourcebook on nordic research in mathematics education (pp. 467-477). Charlotte: Information Age. https://doi.org/10.1007/978-3-642-00742-2_44

Hahn, U. & Chater, N. (1997). Concepts and similarity. In K. Lamberts & D. Shanks (Eds.), Knowledge, concepts and categories (pp. 43-92). Hove: Psychology Press. https://doi.org/10.7551/mitpress/4071.003.0006

Harnad, S. (2005). To cognize it to categorize: congnition is categorization. In H. Cohen & C. Lefebvre (Eds.), Handbook of categorization in cognitive science (pp. 19-44). Amsterdam: Elsevier. https://doi.org/10.1016/B978-008044612-7/50056-1

Heit, E. (1997). Knowledge and concept learning. In K. Lamberts & D. Shanks (Eds.), Knowledge, concepts and categories (pp. 7-41). Hove: Psychology Press. https://doi.org/10.7551/mitpress/4071.003.0005

Hill, H. C. & Ball, D. L. (2004). Learning mathematics for teaching: results from California's mathematics professional development institutes. Journal for Research in Mathematics Education, 35 (5), 330-351. https://doi.org/10.2307/30034819

Hill, H. C., Schilling, S. G. & Ball, D. L. (2004). Developing measures of teachers' mathematics knowledge for teaching. The Elementary School Journal, 105 (1), 11-30. https://doi.org/10.1086/428763

Hill, H. C., Sleep, L., Lewis, J. M. & Ball, D. L. (2007). Assessing teachers' mathematical knowledge: What knowledge matters and what evindence counts? In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (Vol. 1, pp. 111-155). Carlotte: Information Age.

Jacob, E. K. (2004). Classification and categorization: a difference that makes a difference. Library Trends, 52 (3), 515-540.

Kane, M. (2006). Validation. In R. L. Brennan (Ed.), Educational measurement (4 ed.) (pp. 17-64). Westport: American Council on Education/Praeger.

Norwegian Ministry of Education and Research. (2010). National curriculum regulations for differentiated primary and lower secondary teacher education programmes for years 1-7 and years 5-10. Retrieved from http://www.regjeringen.no/en/dep/kd/documents/legislation/regulations/2010/national-curriculum-regulations-for-diff.html?id=594357

Krauss, S., Baumert, J. & Blum, W. (2008). Secondary mathematics teachers' pedagogical content knowledge and content knowledge: validation of the COACTIV constructs. ZDM, 40 (5), 873-892. https://doi.org/10.1007/s11858-008-0141-9

Krauss, S., Neubrand, M., Blum, W., Baumert, J., Brunner, et al. (2008). Die Untersuchung des professionellen Wissens deutscher Mathematik-Lehrerinnen und-Lehrer im Rahmen der COACTIV-Studie. Journal für Mathematik-Didaktik, 29 (3/4), 223-258. https://doi.org/10.1007/BF03339063

Merriam, S. B. (1998). Qualitative research and case study applications in education. San Francisco: Jossey-Bass Publishers.

Murphy, G. L. (2002). The big book of concepts. Cambridge: MIT Press. https://doi.org/10.7551/mitpress/1602.001.0001

Murphy, G. L. & Lassaline, M. E. (1997). Hierarchical structure in concepts and the basic level of categorization. In K. Lamberts & D. Shanks (Eds.), Knowledge, concepts and categories (pp. 93-131). Hove: Psychology Press. https://doi.org/10.7551/mitpress/4071.003.0007

Niemi, H. & Jakku-Sihvonen, R. (2011). Teacher education in Finland. In M. V. Zuljan & J. Vogrinc (Eds.), European dimensions of teacher education - similarities and differences (pp. 33-51). University of Ljubljana.

Robson, C. (2002). Real world research: a resource for social scientists and practitioner-researchers. Oxford: Blackwell.

Rosch, E. (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization (pp. 27-48). Hillsdale: Lawrence Erlbaum. https://doi.org/10.4324/9781032633275-4

Schmeiser, C. B. & Welch, C. J. (2006). Test development. In R. L. Brennan (Ed.), Educational measurement (4 ed.) (pp. 307-353). Westport: Praeger.

Schmidt, W. H., Tatto, M. T., Bankov, K., Blömeke, S., Cedillo, et al. (2007). The preparation gap: teacher education for middle school mathematics in six countries. MSU Centre for Research in Mathematics and Science Education.

Segall, A. (2004). Revisiting pedagogical content knowledge: the pedagogy of content/the content of pedagogy. Teaching and Teacher Education, 20 (5), 489-504. https://doi.org/10.1016/j.tate.2004.04.006

Shadish, W. R., Cook, T. D. & Campbell, D. T. (2002). Experimental and quasi-experimental designs. Boston: Houghton Mifflin.

Shulman, L. S. (1986). Those who understand: knowledge growth in teaching. Educational Researcher, 15 (2), 4-14. https://doi.org/10.2307/1175860

Shulman, L. S. (1987). Knowledge and teaching: foundations of the new reform. Harvard Educational Review, 57 (1), 1-21. https://doi.org/10.17763/haer.57.1.j463w79r56455411

Smith, E. E. & Medin, D. L. (1981). Categories and concepts. Cambridge: Harvard University Press. https://doi.org/10.4159/harvard.9780674866270

Stake, R. E. (1995). The art of case study research. Thousand Oaks: Sage Publications.

Tatto, M. T., Schwille, J., Senk, S., Ingvarson, L., Peck, R. & Rowley, G. (2008). Teacher education and development study in mathematics (TEDS-M): policy, practice, and readiness to teach primary and secondary mathematics. Conceptual framework. East Lansing: Teacher Education and Development International Study Centre, Michigan State University.

Tatto, M. T., Schwille, J., Senk, S., Ingvarson, L., Rowley, G., et al. (2012). Policy, practice, and readiness to teach primary and secondary mathematics in 17 countries: findings from the IEA teacher education and development study in mathematics (TEDS-M). Amsterdam: IEA.

Wilson, M. (2005). Constructing measures: an item response modeling approach. Mahwah: Lawrence Erlbaum.

Yin, R. K. (2003) Case study research: design and methods (Applied Social Research Methods Series, 3 ed.). Thousand Oaks: Sage Publications.

Downloads

Published

2014-03-19

How to Cite

Kaarstein, H. (2014). A comparison of three frameworks for measuring knowledge for teaching mathematics. NOMAD Nordic Studies in Mathematics Education, 19(1), 23–52. https://doi.org/10.7146/nomad.v19i1.148626

Issue

Section

Articles