Omtale av Matematik for lærerstuderende – Ypsilon, basisbog
DOI:
https://doi.org/10.7146/nomad.v13i3.148125Abstract
Hansen, H. C., Skott, J. & Jess, K. (2008), Matematik for lærerstuderende. Ypsilon, basisbog. Forlaget Samfundslitteratur. ISBN 978-87-593-1302-2 (Bind1), ISBN 978-87-593-1346-6 (Bind2)
References
Balacheff, N. (1988). Aspects of proof in pupils' practice of school mathematics. I D. Pimm (Red.), Mathematics, teachers and children (ss. 216- 230). London: Hodder and Stoughton.
Ball, D. L. & Bass, H. (2003). Toward a practice-based theory of mathematical knowledge for teaching. I E. Simmt & B. Davis (Red.), Proceedings of the 2002 annual meeting of the Canadian Mathematics Education Study Group (ss. 3-14). Edmonton, AB: CMESG/GCEDM.
Ball, D. L., Lubienski, S. T. & Mewborn, D. S. (2001). Research on teaching mathematics: The unsolved problem of teachers' mathematical knowledge. I V. Richardson (Red.), Handbook of research on teaching (4. utg.) (ss. 433-456). Washington, DC: American Educational Research Association.
Behr, M. J., Harel, G., Post, T. & Lesh, R. (1992). Rational number, ratio, and proportion. I D. G. Grouws (Red.), Handbook of research on mathematics teaching and learning (ss. 296-333). New York: NCTM.
Bell, A., Greer, B., Grimison, L. & Mangan, C. (1989). Children's performance on multiplicative word problems: elements of a descriptive theory. Journal for Research in Mathematics Education, 20 (5), 434-449. https://doi.org/10.2307/749419
Brousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht: Kluwer.
Brousseau, G., Brousseau, N. & Warfield, V. (2004). Rationals and decimals as required in the school curriculum - Part 1: Rationals as measurement. Journal of Mathematical Behavior, 23 (1), 1-20. https://doi.org/10.1016/S0732-3123(03)00068-3
Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61, 103-131. https://doi.org/10.1007/s10649-006-0400-z
Ernest, P. (1991). The philosophy of mathematics education. London: RoutledgeFalmer.
Fischbein, E. (1987). Intuition in science and mathematics. An educational approach. Dordrecht: Kluwer.
Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht: Reidel. https://doi.org/10.1007/978-94-010-2903-2_2
Heath, T. L. (1956). The thirteen books of Euclid's elements with introduction and commentary (2. utg., Vol. 1). New York: Dover.
Janvier, C. (1987). Representation and understanding: the notion of function as an example. I C. Janvier (Red.), Problems of representation in the teaching and learning of mathematics (ss. 67-71). Hillsdale, NJ: L. Erlbaum.
Kaput, J. (1999). Teaching and learning a new algebra. I E. Fennema & T. Romberg (Red.), Mathematics classrooms that promote understanding (ss. 133-155). Mahwah, NJ: Erlbaum.
KD (2006). Læreplanverket for Kunnskapsløftet (Midlertidig utgave juni 2006). Oslo: Kunnskapsdepartementet.
Kirshner, D. (2001). The structural algebra option revisited. I R. Sutherland, T. Rojano, A. Bell & R. Lins (Red.), Perspectives on school algebra (ss. 83-98). Dordrecht: Kluwer. https://doi.org/10.1007/0-306-47223-6_5
Ma, L. (1999). Knowing and teaching elementary mathematics. Mahwah, NJ: L. Erlbaum. https://doi.org/10.4324/9781410602589
Mason, J. (1996). Expressing generality and roots of algebra. I N. Bednarz, C. Kieran & L. Lee (Red.), Approaches to algebra: perspectives for research and teaching (ss. 65-86). Dordrecht: Kluwer. https://doi.org/10.1007/978-94-009-1732-3_5
Mason, J. (2005). Developing thinking in algebra. London: Paul Chapman Publ.
Niss, M. & Jensen, T. H. (Red.). (2002). Kompetencer og matematiklæring. Ideer og inspiration til udvikling af matematikundervisning i Danmark. København: Undervisningsministeriet.
OECD (2006). Programme for international student assessment (PISA). Lastet ned 28. september 2008 fra http://www.pisa.oecd.org
Rowland, T., Huckstep, P. & Twaites, A. (2005). Elementary teachers' mathematics subject knowledge: the knowledge quartet and the case of Naomi. Journal of Mathematics Teacher Education, 8, 255-281. https://doi.org/10.1007/s10857-005-0853-5
Sfard, A. (1991). On the dual nature of mathematical conceptions: reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1-36. https://doi.org/10.1007/BF00302715
Skott, J. (2004). The forced autonomy of mathematics teachers. Educational Studies in Mathematics, 55, 227-257. https://doi.org/10.1023/B:EDUC.0000017670.35680.88
Steinbring, H. (2006). What makes a sign a mathematical sign? - An epistemological perspective on mathematical interaction. Educational Studies in Mathematics, 61, 133-162. https://doi.org/10.1007/s10649-006-5892-z
Streefland, L. (1991). Fractions in realistic mathematics education: a paradigm of developmental research. Dordrecht: Kluwer. https://doi.org/10.1007/978-94-011-3168-1
Sullivan, P. & Wood, T. (Red.). (2008). The international handbook of mathematics teacher education. Volume 1: Knowledge and beliefs in mathematics teaching and teaching development. Rotterdam: Sense Publishers. https://doi.org/10.1163/9789087905439
Tall, D. & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12, 151-169. https://doi.org/10.1007/BF00305619
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.