Växelverkan mellan intuitiva idéer och formella resonemang – en fallstudie av universitetsstudenters arbete med en analysuppgift

Authors

  • Kerstin Pettersson

DOI:

https://doi.org/10.7146/nomad.v13i1.148075

Abstract

Studiens syfte är att visa hur en växelverkan mellan intuitiva idéer och formella resonemang kan gestalta sig i en problemlösningsprocess. Studien visar att universitetsstudenter redan under sitt första år av matematikstudier förmår utnyttja en sådan växelverkan. En grupp studenter har arbetat med en analysuppgift som berör begreppen funktion och derivata samt inkluderar ett induktionsbevis. Studenterna utnyttjar i den kreativa processen intuitiva idéer och formella resonemang i ett dynamiskt samspel. Växlingarna har ett flertal funktioner: att kontrollera intuitiva uppfattningar, att skaffa nya utgångspunkter för problemlösningsprocessen, att ekonomisera resonemang och att driva arbetet vidare.

References

Bergqvist, E. (2006). Mathematics and mathematics education: two sides of the same coin (PhD thesis). Department of Mathematics and Mathematical Statistics, Umeå University.

Bergsten, C. (in press). Exploiting the gap between intuitive and formal knowledge in mathematics. Regular lecture at ICME 10, Copenhagen 2004 (to appear in the proceedings).

Boesen, J. (2006). Assessing mathematical creativity: comparing national and teacher-made tests, explaining differences and examining impact (PhD thesis). Department of Mathematics and Mathematical Statistics, Umeå University.

Burton, L. (1999a). The practices of mathematicians: what do they tell us about coming to know mathematics? Educational Studies in Mathematics, 37, 121-143. https://doi.org/10.1023/A:1003697329618

Burton, L. (1999b). Why is intuition so important for mathematicians but missing from mathematics education? For the Learning of Mathematics, 19 (3), 27-32.

Duit, R. (2006). Biography - STCSE. Students' and teachers' conceptions and science education. Leibniz Institute for Science Education, University of Kiel.

Farmaki, V. & Paschos, T. (2007). The interaction between intuitive and formal mathematical thinking: a case study. International Journal of Mathematical Education in Science and Technology, 38 (3), 353-365. https://doi.org/10.1080/00207390601035302

Fischbein, E. (1987). Intuition in science and mathematics: an educational approach. Dordrecht: D. Reidel Publishing Company.

Fischbein, E. (1994). The interaction between the formal, the algorithmic, and the intuitive components in a mathematical activity. In R. Biehler, R. W. Scholz, R. Strässer & B. Winkelmann (Eds.), Didactics of mathematics as a scientific discipline (pp. 231-245). Dordrecht: Kluwer Academic Publishers.

Fischbein, E. (1999). Intuitions and schemata in mathematics reasoning. Edu- cational Studies in Mathematics, 38, 11-50. https://doi.org/10.1023/A:1003488222875

Halldén, O. (1999). Conceptual change and contextualization. In W. Schnotz, S. Vosniadou & M. Carretero (Eds.), New perspectives on conceptual change (pp. 53-65). Amsterdam: Pergamon Elsevier.

Halldén, O. (2001). Social konstruktionism, konstruktivism och intentionell analys som heuristiskt verktyg i kvalitativ analys. I O. Halldén, M. Scheja & H. Jakobsson Öhrn, Intentionell analys (Forskningsrapporter från Pedago- giska institutionen, nr 65). Stockholms universitet.

Halldén, O., Haglund, L. & Strömdahl, H. (2007). Conceptions and contexts: on the interpretation of interview and observational data. Educational Psy- chologist, 42 (1), 25-40. https://doi.org/10.1080/00461520709336916

Hanna, G. (1991). Mathematical proof. In D. Tall (Ed.), Advanced mathematical thinking (pp. 54-61). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47203-1_4

Lithner, J. (2004). Mathematical reasoning in calculus textbook exercises. Journal of Mathematical Behavior, 23, 405-427. https://doi.org/10.1016/j.jmathb.2004.09.003

Mamona-Downs, J. (2001). Letting the intuitive bear on the formal: a didacti- cal approach for the understanding of the limit of a sequence. Educational Studies in Mathematics, 48, 259-288. https://doi.org/10.1023/A:1016004822476

Moore, R. (1994). Making the transition to formal proof. Educational Studies in Mathematics, 27, 249-266. https://doi.org/10.1007/BF01273731

Nilsson, P. (2006). Exploring probabilistic reasoning - a study of how students contextualise compound chance encounters in explorative settings (PhD thesis). Växjö University.

Pettersson, K. (2004). Samspel mellan intuitiva idéer och formella bevis: en fall- studie av universitetsstudenters arbete med en analysuppgift (Licentiatupp- sats). Matematiska vetenskaper, Göteborgs universitet.

Pinto, M. & Tall, D. (1999). Student constructions of formal theory: giving and extracting meaning. In O. Zaslavsky (Ed.), Proceedings of the 23rd conference of the International Group for the Psychology of Mathematics Education (Volume 3, pp. 281-288). Haifa: Technion, Israel Institute of Technology

Pinto, M. & Tall, D. (2002). Building formal mathematics on visual imagery: a case study and a theory. For the Learning of Mathematics, 22 (1), 2-10.

Raman, M. (2002). Coordinating informal and formal aspects of mathematics: student behavior and textbook messages. Journal of Mathematical Behavior, 21, 135-150. https://doi.org/10.1016/S0732-3123(02)00119-0

Ryve, A. (2006). Approaching mathematical discourse: two analytical frameworks and their relation to problem solving interactions (PhD thesis). Department of Mathematics and Physics, Mälardalen University.

Scheja, M. (2002). Contextualising studies in higher education (PhD thesis). Department of Education, Stockholm University.

Sirotic, N. & Zazkis, R. (2007). Irrational numbers: the gap between formal and intuitive knowledge. Educational Studies in Mathematics, 65, 49-76. https://doi.org/10.1007/s10649-006-9041-5

Wistedt, I. & Brattström, G. (2005). Understanding mathematical induction in a co-operative setting: merits and limitations of classroom communication among peers. In A. Chronaki & I. M. Christiansen (Eds.), Challenging per- spectives on mathematics classroom communication (pp. 173-203). Greenwich, CT: Information Age Publish.

Vretblad, A. (1995). Algebra och kombinatorik. Malmö: Gleerups.

Von Wright, G. H. (1971). Explanation and understanding. Ithaca, NY: Cornell University Press.

Downloads

Published

2008-03-10

How to Cite

Pettersson, K. (2008). Växelverkan mellan intuitiva idéer och formella resonemang – en fallstudie av universitetsstudenters arbete med en analysuppgift. NOMAD Nordic Studies in Mathematics Education, 13(1), 29–50. https://doi.org/10.7146/nomad.v13i1.148075

Issue

Section

Articles