Exploring young children’s geometrical strategies
DOI:
https://doi.org/10.7146/nomad.v11i2.147986Abstract
This study explores young children’s strategies while transforming polygons, through the use of geometrical models. Data were collected from 291 children ranging from 4 to 8 years of age in Cyprus. Children were asked to draw a stairway of specific polygons, with each shape being bigger or smaller than its preceding one. Relationships between children’s responses in the transformation tasks, their ability to recognize geometric shapes and their IQ level were investigated. Results showed that children used three alternative strategies in the transformation tasks. Children’s IQ score was directly associated with their transformation strategies, while only a low recognition ability was associated with the use of a defective strategy.
References
Bodin, A., Coutourier, R. & Gras, R. (2000). CHIC: Classification Hiérarchique Implicative et Cohésitive-Version sous Windows - CHIC 1.2. Rennes: Association pour la Recherche en Didactique des Mathématiques.
Brody, N. (1999). What is intelligence? International Review of Psychiatry, 11, 19-25. https://doi.org/10.1080/09540269974483
Castelnuovo, E. (1972). Documenti di un' esposizione de matematica. Torino: Boringhieri.
Clements, D. & McMillen. (1996). Rethinking "concrete" manipulatives. Teaching Children Mathematics, 2 (5), 270-279. https://doi.org/10.5951/TCM.2.5.0270
Clements, D. & Sarama, J. (2000). Young children's ideas about geometric shapes. Teaching Children Mathematics, 6 (8), 482-491. https://doi.org/10.5951/TCM.6.8.0482
Clements, D., Swaminathan, M., Hannibal, M. Z. & Sarama, J. (1999). Young children's concepts of shape. Journal for Research in Mathematics Education, 30 (2), 192-212. https://doi.org/10.2307/749610
Cronbach, L. J. & Snow, R. E. (1977). Aptitudes and instructional methods. New York: Irvington.
Dark, V. J. & Benbow, C. P. (1990). Enhanced problem translation and short- term memory: components of mathematical talent. Journal of Educational Psychology, 82, 420-429. https://doi.org/10.1037/0022-0663.82.3.420
Elia, I. & Gagatsis, A. (2003). Young children's understanding of geometric shapes: The role of geometric models. European Early Childhood Education Research Journal, 11, 43-61. https://doi.org/10.1080/13502930385209161
Fischbein, E. (1972). Les modèles génératifs et le développement intellectuel. Activités Recherches Pédagogiques, 5, 10-14.
Gagatsis, A. & Elia, I. (2004). The effects of different modes of representations on mathematical problem solving. In M. Johnsen Høines & A. B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 447-454). Bergen University College.
Gagatsis, A. & Patronis, T. (1990). Using geometric models in a process of reflective thinking in learning and teaching mathematics. Educational Studies in Mathematics, 21 (1), 29-54. https://doi.org/10.1007/BF00311014
Gagatsis, A. & Shiakalli, M. (2004). Ability to translate from one representation of the concept of function to another and mathematical problem solving. Educational Psychology, 24, 645-657. https://doi.org/10.1080/0144341042000262953
Gras, R., Peter, P., Briand, H. & Philippé, J. (1997). Implicative Statistical Analysis. In C. Hayashi, N. Ohsumi, N. Yajima, Y. Tanaka, H. Bock & Y. Baba (Eds.), Proceedings of the 5th Conference of the International Federation of Classification Societies (Vol. 2, pp. 412-419). New York: Springer-Verlag. https://doi.org/10.1007/978-4-431-65950-1_46
Gras, R. & Totohasina, A. (1995). Chronologie et causalité, conceptions sources d'obstacles épistémologiques à la notion de probabilité conditionnelle. Recherche en Didactique des Mathématiques, 15 (1), 49-95.
Hannibal, M. Z. (1999). Young children's developing understanding of geometric shapes. Teaching Children Mathematics, 5 (6), 353-357. https://doi.org/10.5951/TCM.5.6.0353
Hasegawa, J. (1997). Concept formation of triangles and quadrilaterals in the second grade. Educational Studies in Mathematics, 32 (2), 157-179. https://doi.org/10.1023/A:1002923229779
Hoard, M., Geary, D. & Hamson, C. (1999). Numerical and arithmetical cognition: Performance of low- and average-IQ children. Mathematical Cognition, 5 (1), 65-91. https://doi.org/10.1080/135467999387324
Jensen, A. R. (1998). The g factor. Westport, CT: Praeger.
Karmiloff-Smith, A. (1992). Beyond modularity. London: MIT Press. https://doi.org/10.7551/mitpress/1579.001.0001
Lerman, I.C. (1981). Classification et analyse ordinale des données. Paris: Dunod.
Markopoulos, C. & Potari, D. (2001). The role of motion in the development of activities for the teaching and learning of geometric solids. In A. Arvaniteogeorgos, V. Papantoniou & D. Potari (Eds.), Proceedings of the 4th Greek Conference for Geometry (pp. 85-96). Athens, Greece: Patakis Edition (in Greek).
Markovits, Z., Eylon, B. & Bruckheimer, M. (1986). Functions today and yesterday. For the Learning of Mathematics, 6 (2), 18-24.
Mesquita, A. (1998). On conceptual obstacles linked with external represen- tation in geometry. Journal of Mathematical Behaviour, 17 (2), 183-195. https://doi.org/10.1016/S0364-0213(99)80058-5
Modestou, M. & Gagatsis, A. (2004). Students' improper proportional reasoning: a multidimensional statistical analysis. In D. De Bock, M. Isoda, J.A. Garcia-Cruz, A. Gagatsis & E. Simmt (Eds.), Proceedings of 10th International Congress on Mathematical Education - Topic Study Group 2: New Developments and Trends in Secondary Mathematics Education (pp. 87- 94). Copenhagen, Denmark: ICME-10.
National Council of Teachers in Mathematics (1999). Shaping the Standards: geometry and geometry thinking. Teaching Children Mathematics, 5 (6), 358- 359.
Oberdorf, C. & Taylor-Cox, J. (1999). Shape up! Teaching Children Mathematics, 5 (6), 340-345. https://doi.org/10.5951/TCM.5.6.0340
Owens, K. (1999). The role of visualization in young students' learning. In O. Zaslavsky (Ed.), Proceedings of the 23th International Conference for the Psychology of Mathematics Education (Vol.1, pp. 220-234). Haifa, Israel: Technion- Israel Institute of Technology.
Patronis, T. (2001). Fundamental mathematical concepts and children's thinking. (2nd Ed.). Athens: Diptyxo. (in Greek)
Peters, L., Davey, N., Messer, D. & Smith, N. (1999). An investigation into Karmiloff-Smith's RR model: the effects of structured tuition. British Journal of Developmental Psychology, 17, 277-292. https://doi.org/10.1348/026151099165276
Raven, J.C. (1962). Coloured progressive matrices. London: H.K. Lewis & Co.
Robertson, S. A. (1984). Polytopes and symmetry (London Math. Society Lecture Note Series). London: Cambridge University Press.
Van Hiele, P. (1999). Developing geometric thinking through activities that begin with play. Teaching Children Mathematics, 5 (6), 310-316. https://doi.org/10.5951/TCM.5.6.0310
Warren, E. & English, L. (1995). Facility with plane shapes: a multifaceted skill. Educational Studies in Mathematics, 28 (4), 365-383. https://doi.org/10.1007/BF01274079
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.