Conceptual change in mathematics

Authors

  • Kaarina Merenluoto

DOI:

https://doi.org/10.7146/nomad.v10i2.147160

Abstract

In traditional educational contexts, mathematics is considered a hierarchical structure in which new concepts logically follow from prior ones. From the viewpoint of the theories of conceptual change, however, the learning of mathematics is characterized more by discontinuity than gradual and continuous enrichment. These theories stress the crucial role of prior knowledge in learning. According to these theories, prior knowledge does promote learning, but it can also restrict it and lead to misconceptions. This is the case especially with those kinds of concepts where learning demands a radical change in prior knowledge, which is typical of mathematics and science. One example of these kinds of changes in mathematics is the enlargement of number concept from natural to rational numbers. In this article, three different theories of conceptual change are presented and the perspectives of these theories on the difficulty of the above-mentioned enlargement are discussed. Results of empirical research and some implications for teaching mathematics from the viewpoint of theories of conceptual change are also dealt with.

References

Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: MIT Press. Carey, S. (1991). Knowledge acquisition: enrichment of conceptual change? In Carey, S. & Gelman, R. (Eds.), The Epigenesis of mind: Essays on biology and cognition (pp. 257-291). Hillsdale: Lawrence Erlbaum.

Carey, S. & Spelke, E. (1994). Domain-specific knowledge and conceptual change. In L. Hirsfeld & S. Gelman (Eds.), Mapping the mind. Domain specificity in cognition and culture (pp. 169-200). Cambridge University Press. https://doi.org/10.1017/CBO9780511752902.008

Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. Giere (Ed.), Cognitive models of Science (pp.12-186). Minneapolis: University of Minnesota.

Chi, M. T. H. & Slotta, J. D. (1993). The ontological coherence of intuitive physics. Cognition and Instruction, 10(2&3), 249-260. https://doi.org/10.1080/07370008.1985.9649011

Chi, M. T. H., Slotta, J. D. & de Leeuw, N. (1994). From things to process: A theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27-43. https://doi.org/10.1016/0959-4752(94)90017-5

Chi, M. T. H. & Roscoe, R. D. (2002). The process and challenges of conceptual change. In M. Limón & L. Mason (Eds. ), Reframing the processes of conceptual change. Integrating theory and practice (pp. 3-28). Dordrecht: Kluwer. https://doi.org/10.1007/0-306-47637-1_1

Dantzig, T. (1954/ 1930). Number, the language of science. New York: The Free Press. https://doi.org/10.2307/2224269

Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.), Advanced mathematical thinking (pp. 95-123). Dordrecht: Kluwer. https://doi.org/10.1007/0-306-47203-1_7

Duit, R. (1999). Conceptual change approaches in science education. In W. Schnotz, S. Vosniadou & M. Carretero (Eds.), New perspectives on conceptual change (pp. 263-282). Oxford: Elsevier Science.

Duit, R., Roth,W.-M., Komorek, M. & Wilbers, J. (2001). Fostering conceptual change by analogies - between Scylla and Charybdis. Learning and Instruction, 11(4-5), 283-304. https://doi.org/10.1016/S0959-4752(00)00034-7

Ferrari, M. & Chi, M. T. H. (1998). The nature of naive explanations of natural selection. International Journal of Science Education, 20(10), 1231- 1256. https://doi.org/10.1080/0950069980201005

Gallistel, G. R. & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 43-74. https://doi.org/10.1016/0010-0277(92)90050-R

Gelman, R. & Brenneman, K. (1994). First principles can support both universal and culture-specific learning about number and music. In L. Hirshfeld & S. Gelman (Eds.), Mapping the mind. Domain specificity in cognition and culture (pp. 369-390). Cambridge University Press. https://doi.org/10.1017/CBO9780511752902.015

Goodson-Espy, T. (1998). The roles of reification and reflective abstraction in the development of abstract thought: transition from arithmetic to algebra. Educational Studies in Mathematics, 36(3), 219-245. https://doi.org/10.1023/A:1003473509628

Hartnett, P. & Gelman, R. (1998). Early understanding of numbers: paths or barriers to the construction of new understandings? Learning and Instruction, 8(4), 341-374. https://doi.org/10.1016/S0959-4752(97)00026-1

Hatano, G. (1996). A conception of knowledge acquisition and its implications for mathematics education. In P. Steffe, P. Nesher, P. Cobb, G. Goldin & B. Greer (Eds.), Theories of mathematical learning (pp. 197-217). New Jersey: Lawrence Erlbaum.

Hatano, G. & Inagaki, K. (1998). Qualitative changes in intuitive biology. European Journal of Psychology of Education, 12(4), 111-130. https://doi.org/10.1007/BF03173080

Ioannides, C. & Vosniadou, S. (2002). The changing meanings of force. Cognitive Science Quarterly, 2(1), 5-62.

Karmiloff-Smith, A. (1995). Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA: MIT Press.

Kieren, T. (1992). Rational and fractional numbers as mathematical and personal knowledge: implications for curriculum and instruction. In G. Leinhardt, R. Putnam & R. Hattrup (Eds.), Analysis of arithmetic for mathematics teaching (pp. 323-371). New Jersey: Lawrence Erlbaum. https://doi.org/10.4324/9781315044606-6

Kline, M. (1980). Mathematics. The loss of certainty. New York: Oxford University Press.

Kuhn, T. S. (1970). The structure of scientific revolutions (2nd ed.). University of Chicago Press.

Lakatos, I. (1970). Falsification and the methodology of scientific research programmes. In I. Lakatos & A. Musgrave (Eds.), Criticism and the growth of knowledge (pp. 91-196). Cambridge University Press. https://doi.org/10.1017/CBO9781139171434.009

Lehtinen, E. (1998, November). Conceptual change in mathematics. Paper presented at the Second European Symposium on Conceptual Change, Madrid.

Lehtinen, E. & Repo, S. (1996). Activity, social interaction and reflective abstraction: learning advanced mathematical concepts in computer- environment. In S. Vosniadou, E. DeCorte, R. Glaser & H. Mandl (Eds.), International perspectives on the psychological foundations of technology-based learning environments (pp. 105-128). Hillsdale, NJ: Lawrence Erlbaum.

Lehtinen, E., Merenluoto, K. & Kasanen, E. (1997). Conceptual change in mathematics: From rational to (un)real numbers. European Journal of Psychology of Education, 12(2), 131-145. https://doi.org/10.1007/BF03173081

Limón, M. & Caterro, M. (1997). Conceptual change and anomalous data: a case study in the domain of natural sciences. European Journal of Psychology of Education, 12(2), 213-230. https://doi.org/10.1007/BF03173085

Limón, M. (2001). On the cognitive conflict as an instructional strategy for conceptual change: a critical appraisal. Learning and Instruction, 11(4-5), 357-380. https://doi.org/10.1016/S0959-4752(00)00037-2

McCloskey, M.(1983). Intuitive physics. Scientific American, 24, 122-130. https://doi.org/10.1038/scientificamerican0483-122

Merenluoto, K. (2001). Lukiolaisen reaaliluku. Lukualueen laajentaminen käsitteellisenä muutoksena matematiikassa [Students' real numbers. Enlarging the number concept as a conceptual change in mathematics]. Publications of the University of Turku, Finland.

Merenluoto, K. & Lehtinen, E. (2002). Conceptual change in mathematics: understanding the real numbers. In M. Limón & L. Mason (Eds. ), Reframing the processes of conceptual change. Integrating theory and practice (pp. 233-258). Dordrecht: Kluwer.

Mikkilä-Erdmann, M. (2002) Textbook text as a tool for promoting conceptual change in science (Doctoral dissertation). University of Turku, Finland.

Neumann, R. (1998). Schülervorstellungen bezüglich der Dichtheit von Bruchzahlen. Mathematica Didactica, 21(1), 109-119.

Ohlsson, S., & Lehtinen, E. (1997). Abstraction and the acquisition of complex ideas. International Journal of Educational Research, 27 (1), 37-48. https://doi.org/10.1016/S0883-0355(97)88442-X

Posner, G., Strike, K., Hewson, P. & Gertzog, W. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211-227. https://doi.org/10.1002/sce.3730660207

Pozo, J. I., Gómez, M. A. & Sanz, A. (1999). When change does not mean replacement: Different representations for different context. In W. Schnotz, S. Vosniadou & M. Carretero (Eds.), New perspectives on conceptual change (pp. 161-174). Oxford: Elsevier Science.

Reiner, M., Slotta, J. D., Chi, M. T. H. & Resnick, L. B. (2000). Naive physics reasoning: a commitment to substance based conceptions. Cognition and Instruction, 18(1), 1-34. https://doi.org/10.1207/S1532690XCI1801_01

Russell, B. (1993). Introduction to mathematical philosophy. New York: Dover Publications.

Schnotz, W., Vosniadou, S. & Caterrero, M. (Eds.) (1999). New perspectives on conceptual change. Oxford: Elsevier Science.

Slotta, J.D., Chi, M.T.H. & Joram. E. (1995). Assessing students' misclassifications of physics concepts: an ontological basis for conceptual change. Cognition and Instruction, 13(3), 373-400. https://doi.org/10.1207/s1532690xci1303_2

Spelke, S. E. (1991). Physical knowledge in infancy: Reflections on Piaget's theory. In S. Carey & R. Gelman (Eds.), The epigenesis of mind: Essays on biology and cognition (pp. 133-170). Hillsadale, NJ: Erlbaum.

Starkey, P. (1992). The early development of numerical reasoning. Cognition, 43, 93-126. https://doi.org/10.1016/0010-0277(92)90034-F

Starkey, P., Spelke, E. & Gelman, R. (1990). Numerical abstraction by human infants. Cognition, 36, 97-127.

https://doi.org/10.1016/0010-0277(90)90001-Z

Stafilidou, M. & Vosniadou, S. (1999). Children's beliefs about the mathematical concept of fraction (Abstract. 8th European conference for Research on Learning and Instruction, Göteborg, Sweden). Retrieved September 22, 2005 from http://www.ped.gu.se/biorn/earli/conf/abstracts/ abstractsS.html

Tall, D. (1991). The psychology of advanced mathematical thinking. In D. Tall (Ed.), Advanced mathematical thinking (pp. 3-24). Dordrecht: Kluwer. https://doi.org/10.1007/0-306-47203-1

Tsamir, P. & Dreyfus, T. (2002). Comparing infinite sets - a process of abstraction. The case of Ben. The Journal of Mathematical Behavior, 21(1), 1-23. https://doi.org/10.1016/S0732-3123(02)00100-1

Vamvakoussi, X. & Vosniadou, S. (2002). What mental models do students use regarding the structure of the domain of rational numbers? In A.C. Cockburn & E. Nardi (Eds.), Proceedings of the 26th Conference of the International group for the Psychology of Mathematics Education (Volume 1, 326). Norwich, UK: University of East Anglia.

Verschaffel, L., Greer, B. & De Corte, E. (2000). Making sense of word problems. Lisse: Swets & Zeitlinger.

Vinner, S. (1991). The role of definitions in the teaching and learning of mathematics. In D. Tall (Ed.), Advanced mathematical thinking (pp. 65- 80). Dordrecht: Kluwer. https://doi.org/10.1007/0-306-47203-1_5

Wiser, M. & Amin, T. (2001). "Is heat hot?" Inducing conceptual change by integrating everyday and scientific perspectives on thermal phenomena. Learning and Instruction, 11 (4-5), 331-356. https://doi.org/10.1016/S0959-4752(00)00036-0

Vosniadou, S. (1994). Universal and culture-specific properties of children's mental models of the earth. In L. Hirsfeld & S. Gelman (Eds.), Mapping the mind. Domain specificity in cognition and culture (pp. 412-430). Cambridge University Press. https://doi.org/10.1017/CBO9780511752902.017

Vosniadou, S. & Brewer, W. F. (1987). Theories of knowledge restructuring in development. Review of Educational Research, 57, 51-67. https://doi.org/10.3102/00346543057001051

Vosniadou, S. & Ioannides, C. (1998). From conceptual development to science education: a psychological point of view. International Journal of Science Education, 20(10), 1213-1230. https://doi.org/10.1080/0950069980201004

Vosniadou, S. (1999). Conceptual change research: state of art and future directions. In W. Schnotz, S. Vosniadou & M. Carretero (Eds.), New perspectives on conceptual change (pp. 3-14). Oxford: Elsevier Science, .

Vosniadou, S., Ioannides, C., Dimitrakopoulou, A. & Papademetriou, E. (2001). Designing learning environments to promote conceptual change in science. Learning and Instruction, 11(4-5), 381-419. https://doi.org/10.1016/S0959-4752(00)00038-4

Downloads

Published

2005-06-10

How to Cite

Merenluoto, K. (2005). Conceptual change in mathematics. NOMAD Nordic Studies in Mathematics Education, 10(2), 17–34. https://doi.org/10.7146/nomad.v10i2.147160

Issue

Section

Articles