Mathematical belief research in Finland

Authors

  • Erkki Pehkonen
  • Markku Hannula

DOI:

https://doi.org/10.7146/nomad.v9i2.147118

Abstract

In this paper we give a brief overview of the present state of belief research done in Finland. The Finnish research on mathematical beliefs has recently flourished because of three different sources of funding provided by the Academy of Finland: 1) a national graduate school for mathematics, physics, and chemistry teachers, 2) a series of international MAVI workshops, and 3) research projects on affective issues in mathematics. The Finnish research has contributed especially to understanding the development of beliefs during teacher education and to the development of theoretical foundation of belief research as well as some new methodological solutions.

References

Abelson, R. (1979). Differences between belief systems and knowledge systems. Cognitive Science, 3, 355-366. https://doi.org/10.1016/S0364-0213(79)80013-0

Attorps, I. (2004). Conceptions as a part of mathematics teacher knowledge (A manuscript for doctoral thesis). Faculty of Behavioral Sciences, University of Helsinki.

Brophy, J. E., & Evertson, C. M. (1981). Student characteristics and teaching. New York: Longman.

Di Martino, P. (Ed.) (2002). MAVI European workshop, MAVI XI, research on mathematical beliefs. University of Pisa. https://doi.org/10.1007/978-1-4757-4495-8

Dionné, J. (1984). The perception of mathematics among elementary school teachers. In J. Moser (Ed.), Proceedings of the 6th Annual Meeting of PME-NA (pp. 223 - 228). Madison: University of Wisconsin.

Ernest, P. (1991). The philosophy of mathematics education. Hampshire: Falmer Press.

Evans, J., Hannula, M. S., Philippou, G., & Zan, R. (2003). Introduction; thematic group 2, affect and mathematical thinking (draft version). In Proceedings of the CERME-3 conference. Retrieved May 10, 2004 from: http://www.dm.unipi.it/~didattica/CERME3/draft/proceedings_draft/TG2_draft/

Fennema, E., & Sherman, J. A. (1976). Fennema-Sherman mathematics attitudes scales. JSAS Catalog of Selected Documents in Psychology, 6 (31). (Ms. No. 1225).

Forgasz, H., & Leder, G.C. (2000). The 'mathematics as a gendered domain' scale. In T. Nakahara & M. Koyama (Eds.), Proceedings of the 24th Conference of PME. Volume 2 (pp. 273-279). Hiroshima University.

Furinghetti, F. & Pehkonen, E. (2002). Rethinking characterizations of belief. In G. Leder, E. Pehkonen & G. Törner (Eds.), Beliefs: A hidden variable in mathematics education? (pp. 39-57). Dordrecht: Kluwer. https://doi.org/10.1007/0-306-47958-3_3

Green, T. F. (1971). The activities of teaching. Tokyo: McGraw-Hill Kogakusha.

Hannula, M. (1998). Changes of beliefs and attitudes. In E. Pehkonen & G. Törner (Eds.) The State-of-Art in Mathematics-Related Belief Research; Results of the MAVI activities (Research report 184) (pp. 198-222). Department of teacher education, University of Helsinki.

Hannula, M. S. (2002a). Attitude towards mathematics: emotions, expectations and values. Educational Studies in Mathematics, 49 (1), 25-46. https://doi.org/10.1023/A:1016048823497

Hannula, M. S. (2002b). Goal regulation: needs, beliefs, and emotions. In. A. D. Cockburn & E. Nardi (Eds), Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education. Volume 3 (pp. 73-80). Norwich: University of East Anglia.

Hannula, M. S. (2003a). Fictionalising experiences - experiencing through fiction. For the Learning of Mathematics, 23 (3), 33-39

Hannula, M. S. (2003b). Locating fraction on a number line. In N. A. Pateman, B. J. Dougherty & J. Zilliox (Eds.), Proceedings of the 27th Conference of the International Group for the Psychology of Mathematics Education, Volume 3 (pp. 17-24). Honolulu: University of Hawaii.

Hannula, M. S. (2004). Affect in mathematical thinking and learnin (A doctoral thesis). Faculty of Education, University of Turku.

Hannula, M. S., Maijala, H. & Pehkonen, E. (2004). Development of understanding and self-confidence in mathematics; grades 5-8. Submitted to M. Høines et al. (Eds.), Proceedings of the PME conference. University of Bergen.

Hannula, M. S., Maijala, H., Pehkonen, E., & Soro, R. (2002). Taking a step to infinity. In S. Lehti & K. Merenluoto (Eds.), Third European Symposium on Conceptual Change, A process approach to conceptual change, June 26-28. 2002, Turku, Finland (pp. 195-200). University of Turku.

Hannula, M., Malmivuori, M. L., & Pehkonen, E. (1996). Development of pupils ́ mathematical beliefs: A description of a research project. In E. Pehkonen (Ed.), Proceedings of the MAVI-3 workshop in Helsinki 23.- 26.8.1996 (Research Report 170) (pp. 39-47). Department of Teacher Education, University of Helsinki.

Hersh, R. (1997). What is mathematics, really? New York: Oxford University Press. https://doi.org/10.1515/dmvm-1998-0205

Hoskonen, K. (1999). A good pupil's beliefs about mathematics learning assessed by repertory grid methodology. In O. Zaslavsky (Ed.), Proceedings of the 23rd Conference of PME (pp. 97-104). Haifa: Israel Institute of Technology.

Huhtala, S. (2002). «... these just don't mean anything ...» - 'Tuning out' mathematics. In P. Di Martino (Ed), MAVI European Workshop, MAVI XI, Research on Mathematical Beliefs (pp. 57-64). University of Pisa.

Kaasila, R. (2002). »There's someone else in the same boat after all.» Preservice elementary teachers' identification with the mathematical biography of other students. In P. Di Martino (Ed), MAVI European Workshop, MAVI XI, Research on Mathematical Beliefs (pp. 65-75). University of Pisa.

Kaasila, R., Laine, A., Hannula, M. S., & Pehkonen, E. (2004). The connection between entrance examination procedures and pre-service elementary teachers' achievement in mathematics. Submitted to M. Høines et al. (Eds.), Proceedings of the PME conference. University of Bergen.

Kelly, G. A. (1955). The psychology of personal constructs. Volume 1: A theory of personality. New York: Norton.

Laine, A., Huhtala, S., Kaasila, R., Hannula, M. S., & Pehkonen, E. (2004). Pre-service elementary teachers' situational strategies in division. Submitted to M. Høines et al. (Eds.), Proceedings of the PME conference. University of Bergen.

Leder, G., Pehkonen, E., & Törner, G. (eds.) (2002). Beliefs: A hidden variable in mathematics education? Dordrecht: Kluwer. https://doi.org/10.1007/0-306-47958-3

Lester, F. K., Garofalo, J., & Kroll, D. L. (1989). Self-confidence, interest, beliefs, and metacognition: Key influences on problem solving behavior. In D. B. McLeod & V. M. Adams (Eds.), Affects and Mathematical Problem Solving (pp. 75-88). New York: Springer-Verlag. https://doi.org/10.1007/978-1-4612-3614-6_6

Lindgren, S. (1995). Pre-service teachers' beliefs and conceptions about mathematics and teaching mathematics (Report A 4/1995). The Department of Teacher Education, Tampere University.

Malmivuori, M. L. (2001). The dynamics of affect, cognition, and social environment in the regulation of personal learning processes: The case of mathematics (Research Report 172). Department of Teacher Education, University of Helsinki.

Malmivuori, M. L., & Pehkonen, E. (1996). Mathematical beliefs behind school performances. In. L. Puig & A. Gutierrez (Eds.), Proceedings of the PME-20 conference, Volume 3 (pp. 305-311). University of Valencia.

McLeod, D. B. (1992). Research on affect in mathematics education: A reconceptualization. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 575-596). New York: MacMillan.

McLeod, D. B. & Adams, V. M. (eds.) (1989). Affects and mathematical problem solving. New York: Springer-Verlag. https://doi.org/10.1007/978-1-4612-3614-6

Nurmi, A., Hannula, M. S., Maijala, H., & Pehkonen, E. (2003). On pupils' self-confidence in mathematics: gender comparisons. In N. A. Pateman, B. J. Dougherty & J. Zilliox (Eds.), Proceedings of the 27th Conference of the International Group for the Psychology of Mathematics Education. Volume 3 (pp. 453-460). Honolulu: University of Hawaii.

Op 't Eynde, P., De Corte, E., & Verschaffel, L. (2002). Framing students' mathematics-related beliefs: A quest for conceptual clarity and a comprehensive categorization. In G. Leder, E. Pehkonen & G. Törner (Eds.), Beliefs: A hidden variable in mathematics education? (pp. 13-37). Dordrecht: Kluwer. https://doi.org/10.1007/0-306-47958-3_2

Pehkonen, E. (1991). Lehrermeinungen über Problemlösen. In Beiträge zum Mathematikunterricht 1990 (pp. 217-220). Bad Salzdetfurth: Verlag Franzbecker.

Pehkonen, E. (1993). What are Finnish teacher educators' conceptions about the teaching of problem solving in mathematics? European Journal for Teacher Education, 16 (3), 237-256. https://doi.org/10.1080/0261976930160306

Pehkonen, E. (1994). On teachers' beliefs and changing mathematics teaching. Journal für Mathematik-Didaktik, 15 (3/4), 177-209. https://doi.org/10.1007/BF03338807

Pehkonen, E. (1995). Pupils' view of mathematics: Initial report for an international comparison project (Research Report 152). Department of Teacher Education, University of Helsinki.

Pehkonen, E. (1999). Conceptions and images of mathematics professors on teaching mathematics in school. International Journal of Mathematical Education in Science and Technology, 30 (3), 389-397. https://doi.org/10.1080/002073999287905

Pehkonen, E., Hannula, M. S., Kaasila, R., & Laine, A. (2004). Elementary student teachers' view of themselves as learners of mathematics. Submitted to M. Høines et al. (Eds.), Proceedings of the PME conference. University of Bergen.

Pehkonen, E. & Pietilä, A. (2003). On relationships between beliefs and knowledge in mathematics education (draft version). In Proceedings of the CERME-3 conference. Retrieved May 10, 2004 from: http://www.dm.unipi.it/~didattica/CERME3/draft/proceedings_draft/TG2_draft/

Pehkonen, E. & Törner, G. (Eds.) (1998). The state-of-art in mathematics- related belief research. Results of the MAVI activities (Research Report 195). Department of Teacher Education, University of Helsinki.

Pehkonen, E. & Törner, G. (Eds.) (1999). Mathematical beliefs and their impact on teaching and learning of mathematics (Preprint Nr. 457). Schriftenreihe des Fachbereichs Mathematik. Gerhard-Mercator-Universität Duisburg Gesamthochschule.

Pehkonen, E. & Törner, G. (2004). Methodological considerations on investigating teachers' beliefs of mathematics and its teaching. NOMAD. Nordic Studies in Mathematics Education, 9 (1), 21-49.

Pehkonen, E. & Vaulamo, J. (1999). Pupils in lower secondary school solving open-ended problems in mathematics. In O. Zaslavsky (Ed.), Proceedings of the PME-23 conference, Volume 4 (pp. 33-40). Haifa: Israel Institute of Technology.

Perkkilä, P. (2003). Primary school teachers' mathematics beliefs and teaching practices (draft version). In Proceedings of the CERME-3 conference. Retrieved May 10, 2004 from: http://www.dm.unipi.it/~didattica/CERME3/draft/proceedings_draft/TG2_draft/

Pietilä, A. (2002). An attempt to clarify some fuzzy concepts related to the view of mathematics. In. P. Di Martino (Ed.), MAVI European Workshop, MAVI XI, Research on Mathematical Beliefs (pp. 101-108). University of Pisa.

Riessman, K. (1993). Narrative analysis (Qualitative Research Methods Series 30). Sage: Newsbury Park.

Schoenfeld A. H. (1983). Beyond the purely cognitive: Beliefs systems, social cognitions, and metacognitions as driving forces in intellectual performance. Cognitive Science, 7 (4), 329-363. https://doi.org/10.1016/S0364-0213(83)80003-2

Schoenfeld, A. H. (1987). What's all the fuss about metacognition? In A. H. Schoenfeld (Ed.), Cognitive Science and Mathematics Education (pp. 189-215). Hillsdale: Lawrence Erlbaum Associates.

Schoenfeld, A. H. (1992). Learning to think mathematically: problem solving, meta-cognition, and sense making in mathematics. In D.A. Grouws (Ed.), Handbook of research on mathematics learning and teaching (pp. 334-370). New York: Macmillan.

Schoenfeld, A. H. (1998). Toward a theory of teaching-in-context. Issues in Education, 4 (1), 1-94. https://doi.org/10.1016/S1080-9724(99)80076-7

Silver E.A. (1985). Research on teaching mathematical problem solving: Some underrepresented themes and needed directions. In E.A. Silver (Ed.), Teaching and Learning Mathematical Problem Solving: Multiple Research Perspectives (pp. 247-266). Hillsdale: Lawrence Erlbaum Associates.

Soro, R. (2000). Teachers' beliefs about girls and boys and mathematics. In S. Götz & G. Törner (Eds.), Research on Mathematical Beliefs, Proceedings of the MAVI-9 European Workshop (SM-DU-482) (pp. 90-95). Schriftenreihe des Fachbereichs Mathematik. Universität Duisburg.

Soro, R. (2002). Teachers' beliefs about gender differences in mathematics: 'Girls or boys?' scale. In. A. D. Cockburn & E. Nardi (Eds), Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education. Volume 4 (pp. 225-232). Norwich: University of East Anglia.

Thompson, A. G. (1992). Teachers' beliefs and conceptions: A synthesis of the research. In D.A. Grouws (Ed.), Handbook of research on mathematics learning and teaching (pp. 127-146). New York: Macmillan.

Törner, G. & Grigutsch, S. (1994). Mathematische Weltbilder bei studienanfängern eine Erhebung. Journal für Mathematik-Didaktik, 15 (3/ 4), 211-251. https://doi.org/10.1007/BF03338808

Välijärvi, J., Linnakylä, P., Kupari, P., Reinikainen, P. & Arffman, I. (2002). The Finnish success in PISA - and some reasons behind it. Institute for Education Research, University of Jyväskylä.

Downloads

Published

2004-07-01

How to Cite

Pehkonen, E., & Hannula, M. (2004). Mathematical belief research in Finland. NOMAD Nordic Studies in Mathematics Education, 9(2), 23–38. https://doi.org/10.7146/nomad.v9i2.147118

Issue

Section

Articles