Rethinking the role of context in mathematics education
DOI:
https://doi.org/10.7146/nomad.v5i3.146604Abstract
In this paper the role of context in teaching and learning mathematics is considered from a «local» and then from a «global» point of view. The «local» viewpoint focuses on context as a «scene» providing meaning to the mathematical content, while the «global» one addresses the problem of transformation of a given context, which arises when the teacher intends to put the students into a new perspective of mathematical knowledge. Both these viewpoints are used in an attempt to relate context to the metonymic transformation of the meaning of words used in mathematics. From this point of view various mathematical and empirical (classroom) examples are discussed and reinterpreted in the paper.
References
Bartolini-Bussi, M. (1991). Social Interaction and Mathematical knowledge. In: Proceedings of P.M.E. 15 (pp. 1-16), Assisi, Italy.
Bauersfeld, H. and Zawadowski, W. (1981). Metaphors and Metonymies in the Teaching of Mathematics. In: Compte Rendu des Rencontres CIEAEM.
Brousseau, G. (1983). Les Obstacles Epistemologiques et les Problemes en Mathematiques. Recherches en Didactique des Mathematiques, Vol. 4, No 2, 165-198.
Cantor, G. (1955). Contributions to the Founding of the Theory of Transfinite Numbers. Dover Publications.
Chevallard, Y. (1988). Sur l' Analyse Didactique: Deux etudes sur les notions de Contrat et de Situation. Publication de 1' IREM d' Aix-Marseille.
Cobb, P. (1986) Contexts, Goals, Beliefs and Learning Mathematics, For the Learning of Mathematics 6.2, 2-9.
Dedekind, R. (1963). Essays on the Theory of Numbers, Dover Publ.
Dhombres, J. (1976). Quelques aspects de l'histoire des equations fonctionelles liees a l'evolution du concept de fonction. Archive for History of Exact Sciences, Vol. 36. 92-181. https://doi.org/10.1007/BF00357273
Dor, J. (1985). Introduction a la lecture de Lacan: L'inconscient structure comme un langage. Denoel.
Dreyfus, H. and Wakefield, J. (1994). From the psychology of «depth» to the psychology of «width»: A Phenomenological Approach to Psychopathology. In: Freedom and Symptom. Entropia editions (in Greek).
Evans, J. (1993) Adults and Numeracy. Unpublished Ph. D. Thesis, University of London.
Freud, S. (1967). L'Interpretation des Reves. (Translated by D. Berger), P.U.F., Paris.
Glaeser, G. (1981). Epistemologie des Nombres Relatifs. Recherches en Didactique des Mathematiques, Vol. 2, No 3, 303-346.
Godement, R. (1973). Topologie Algebrique et Theorie des Faisceaux. Hermann.
Griffiths, R. and Clyne, M. (1991). The power of story: its role in learning mathematics. Mathematics Teaching 135,42-45.
Jacobson, R. (1963). Essais de Linguistique Generate. Minuit.
Janvier, C. (1990). Contextualization and Mathematics For All. In: T. J. Cooney and C.
R. Hirsh (eds) Teaching and Learning Mathematics in the 1990s. N.C.T.M.
Klein, F. (1872). Vergleichende Betrachtungen uber neuere geometrische Forschungen, Erlangen 1872 also in Math. Annalen 43, 1893, p. 63. https://doi.org/10.1007/BF01446615
Lacan, J. (1966). Ecrits, Seuil, Paris.
Le Lionnais, F. (ed.) (1971). Great Currents of Mathematical Thought (Vol. I, Mathematics: concepts and development), Dover Publ.
Mackenzie, W. (1972). Power, Violence, Decision, Penguin.
Nielsen, L., Patronis, T. And Skovsmose, O. (1996). Connecting Corners in Europe: A Greek-Danish Project in Mathematics Education. Aalborg University (preprint).
Patronis, T. (1995) Scene-Setting versus Embodiment: Common sense as part of non- institutionalized knowledge. In: Proceedings of CIEAEM 47, (pp. 102-106), Berlin.
Patronis, T. (1997). Arguments for the «proof» of and counter-arguments about Euclid's st Fifth Postulate in the mathematics classroom. In: Proceedings of the 1 Greek Meeting for the History and Pedagogy of Mathematics. Thessaloniki (in Greek).
Sartre, J.- P. (1963). Les Mots. Gallimard.
Skovsmose, O. (1994) Towards a Philosophy of Critical Mathematics Education. Kluwer Acad. Publishers. https://doi.org/10.1007/978-94-017-3556-8
Skovsmose, O. (1996) Meaning in Mathematics Education. Royal Danish School of Educ. Studies (preprint).
Van den Brink, J. and Meeder, M. (1991). Mecca, Mathematics Teaching 137, 20-23. Walkerdine, V. (1988). The Mastery of Reason: Cognitive Development and the Production of Rationality, Routledge.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.