Når algoritmer styrer nyhedsstrømmen. YouTube-anbefalinger under folketingsvalget i 2019

Forfattere

DOI:

https://doi.org/10.7146/politica.v53i2.130385

Nøgleord:

algoritmer, filterboble, YouTube, folketingsvalg 2019, selektiv eksponering

Resumé

Hvad folk ser og læser i medierne, bestemmes ikke længere kun af journalister, men i stigende grad af algoritmer. Disse algoritmer vælger, sorterer og prioriterer vores information. Automatiserede processer, som fx YouTubes anbefalingsalgoritme, påvirker den måde, vi ser verden på. Et vigtigt demokratisk spørgsmål er derfor, om YouTubes anbefalingsalgoritme eksponerer publikum incidentalt for politisk information, efter at man har set underholdningsindhold, og om algoritmen skaber en filterboble ved primært at anbefale indhold med et lignende politisk perspektiv. Under det danske folketingsvalg i 2019 var anbefalingsalgoritmen mere tilbøjelig til at føre seere væk fra end hen imod nyheder med politisk indhold. Når folk havde set en video, der var uploadet af de politiske partier Venstre eller Stram Kurs, blev de af algoritmen primært anbefalet videoer fra de samme partier, hvilket kan medføre, at de bliver bekræftede i forudindtagne holdninger (bekræftelsesbias). For andre partier var dette mindre tilfældet. Kun i begrænset omfang fører anbefalingsalgoritmen seere fra mainstream til ekstremt højreorienteret indhold.

Forfatterbiografi

Arjen van Dalen

Professor MSO, Center for Journalistik, Institut for Statskundskab, Syddansk Universitet.

Referencer

Albæk, Erik, Arjen Van Dalen, Nael Jebril og Claes H. De Vreese (2014). Political Journalism in Comparative Perspective. Cambridge: Cambridge University Press.

Andersen, Kim, Morten Skovsgaard og Rasmus T. Pedersen (2019). The X Factor of opportunity structures: How grab and wrap effects of entertainment create inadvertent news audience in a high-choice media environment. European Journal of Communication 34 (5): 535-551.

Bakshy, Eytan, Solomon Messing og Lada A. Adamic (2015). Exposure to ideologically diverse news and opinion on Facebook. Science, 348 (6239): 1130-1132.

Baum, Matthew A. og Angela S. Jamison (2006). The Oprah effect: How soft news helps inattentive citizens vote consistently. The Journal of Politics 68 (4): 946-959.

Boulianne, Shelley, Karolina Koc-Michalska og Bruce Bimber (2020). Right-wing populism, social media and echo chambers in western democracies. New Media & Society 22 (4): 683-699.

Brants, Kees og Peter Neijens (1998). The infotainment of politics. Political Communication 15 (2): 149-164.

Bucher, Taina (2018). If ... Then: Algorithmic Power and Politics. Oxford: Oxford University Press.

Burgess, Joshua og Jean Green (2018). YouTube: Online Video and Participatory Culture. Hoboken: John Wiley & Sons.

Carlson, Tom og Kim Strandberg (2008). Riding the Web 2.0 wave: Candidates on YouTube in the 2007 Finnish national elections. Journal of Information Technology & Politics 5 (2): 159-174.

Chaslot, Guillaume (2016). YouTube’s A.I. was divisive in the US presidential election. https://medium.com/the-graph/youtubes-ai-is-neutral-towards-clicks-but-is-biased-towards-people-and-ideas-3a2f643dea9a

Cook, Timothy E. (1998). Governing With the News: The News Media as a Political Institution. Chicago: University of Chicago Press.

Davidson, James et al. (2010). The YouTube video recommendation system, pp. 293-296 i Proceedings of the Fourth ACM Conference on Recommender Systems. https://doi.org/10.1145/1864708.1864770

DeVito, Michael A. (2017). From editors to algorithms: A values-based approach to understanding story selection in the Facebook news feed. Digital Journalism 5(6): 753-773.

Esser, Frank et al. (2012). Political information opportunities in Europe: A longitudinal and comparative study of thirteen television systems. The International Journal of Press/Politics 17 (3): 247-274.

Flaxman, Seth, Sharad Goel og Justin M. Rao (2016). Filter bubbles, echo chambers, and online news consumption. Public Opinion Quarterly 80 (S1): 298-320.

Fletcher, Richard og Rasmus K. Nielsen (2018). Are people incidentally exposed to news on social media? A comparative analysis. New Media & Society 20 (7): 2450-2468.

Gillespie, Tarleton (2014). The relevance of algorithms. Media Technologies: Essays on Communication, Materiality, and Society 167. DOI: http://dx.doi.org/10.7551/mitpress/9780262525374.003.0009

Gueorguieva, Vassia (2008). Voters, MySpace, and YouTube: The impact of alternative communication channels on the 2006 election cycle and beyond. Social Science Computer Review 26 (3): 288-300.

Hallin, Daniel C. (1984). The media, the war in Vietnam, and political support: A critique of the thesis of an oppositional media. The Journal of Politics 46 (1): 2-24.

Kalogeropoulos, Antonis (2018). Online news video consumption: A comparison of six countries. Digital Journalism 6 (5): 651-665.

Kitchin, Rob (2017). Thinking critically about and researching algorithms. Information, Communication & Society 20 (1): 14-29.

Krippendorff, Klaus (2018). Content Analysis: An Introduction to Its Methodology. Newbury Park: Sage Publications.

Lacy, Stephen, Brendan R. Watson, Daniel Riffe og Jeanette Lovejoy (2015). Issues and best practices in content analysis. Journalism & Mass Communication Quarterly 92 (4): 791-811.

May, Albert L. (2010). Who tube? How YouTube’s news and politics space is going mainstream. The International Journal of Press/Politics 15 (4): 499-511.

Mehlsen, Camilla (2020). Influencere – de nye unge mediehuse. Odense: Mediernes Forsknings- og Innovationscenter, Syddansk Universitet. https://www.sdu.dk/-/media/images/om_sdu/centre/journalistik/mfi/billeder/influencerrapport.pdf

Möller, Judith, Damian Trilling, Natali Helberger og Bram van Es (2018). Do not blame it on the algorithm: An empirical assessment of multiple recommender systems and their impact on content diversity. Information, Communication & Society 21 (7): 959-977.

Munger, Kevin og Joseph Phillips (2020). Right-wing YouTube: A Supply And Demand Perspective. The International Journal of Press/Politics. DOI: https://doi.org/10.1177%2F1940161220964767

Nickerson, Raymond S. (1998). Confirmation bias: A ubiquitous phenomenon in many guises. Review of General Psychology 2 (2): 175-220.

O’Callaghan, Derek, Derek Greene, Maura Conway, Joe Carthy og Pádraig Cunningham (2015). Down the (white) rabbit hole: The extreme right and online recommender systems. Social Science Computer Review 33 (4): 459-478.

Pariser, Eli (2011). The Filter Bubble: What the Internet Is Hiding From You. City of Westminster: Penguin Books.

Ribeiro, Manoel H., Raphael Ottoni, Robert West, Virgilio A. Almeida og Wagner Meira (2020). Auditing radicalization pathways on YouTube, pp. 131-141 i Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency.

Rieder, Bernhard (2015). YouTube data tools (version 1.10) [software]. Retrieved from YouTube Data Tools website: https://tools.digitalmethods.net/netvizz/youtube.

Rieder, Bernhard, Ariadna Matamoros-Fernández og Óscar Coromina (2018). From ranking algorithms to “ranking cultures” Investigating the modulation of visibility in YouTube search results. Convergence 24 (1): 50-68.

Schmitt, Josephine B., Diana Rieger, Olivia Rutkowski og Julian Ernst (2018). Counter-messages as prevention or promotion of extremism?! The potential role of YouTube: Recommendation algorithms. Journal of Communication 68 (4): 780-808.

Schrøder, Kim C., Mark Ørsten og Mads K. Eberholst (2019). Danskernes brug af nyhedsmedier 2019. Roskilde Universitet. https://doi.org/10.5281/zenodo.3243164

Skovsgaard, Morten, Adam Shehata og Jesper Strömbäck (2016). Opportunity structures for selective exposure: Investigating selective exposure and learning in Swedish election campaigns using panel survey data. The International Journal of Press/Politics 21 (4): 527-546.

Slots- og Kulturstyrelsen (2018). Kort nyt. Brug af sociale medier i 2018. https://mediernesudvikling.slks.dk/2018/kort-nyt/brug-af-sociale-medier-i-2018/ (18. september, 2020).

Strömbäck, Jesper (2005). In search of a standard: Four models of democracy and their normative implications for journalism. Journalism Studies 6 (3): 331-345.

Tewksbury, David, Andrew J. Weaver og Brett D. Maddex (2001). Accidentally informed: Incidental news exposure on the World Wide Web. Journalism & Mass Communication Quarterly 78 (3): 533-554.

Tucker, Joshua A. et al. (2018). Social media, political polarization, and political disinformation: A review of the scientific literature. Political polarization, and political disinformation: a review of the scientific literature (March 19, 2018). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3144139

Van Dalen, Arjen (2019). Rethinking journalist–politician relations in the age of populism: How outsider politicians delegitimize mainstream journalists. Journalism, DOI: https://doi.org/10.1177%2F1464884919887822.

Zhou, Renjie, Samamon Khemmarat og Lixin Gao (2010). The impact of YouTube recommendation system on video views, pp. 404-410 i Proceedings of the 10th ACM SIGCOMM conference on Internet measurement.

Downloads

Publiceret

2021-05-03

Citation/Eksport

van Dalen, A. (2021). Når algoritmer styrer nyhedsstrømmen. YouTube-anbefalinger under folketingsvalget i 2019. Politica, 53(2), 168–187. https://doi.org/10.7146/politica.v53i2.130385