The use of spreadsheet tools in assessment: an instrumented technique perspective
DOI:
https://doi.org/10.7146/nomad.v30i1.152932Keywords:
mathematicsAbstract
A challenge in computer-based assessment, especially when introducing specific digital tools, is balancing mathematics assessment with students’ computer skills. This exploratory qualitative study aims to investigate aspects of student-tool-interaction, essential to consider when designing digital tools for assessment. Eight 15-year-old students worked in pairs with three digital test items employing interactive spreadsheet tools, followed by semi-structured interviews. The combined analysis of observations of students’ interactions with the items and the interviews indicates difficulties in using basic spreadsheet functions – despite their conceptual understanding of the tools. The main implications of the findings emphasize the importance of integrating digital tools into learning situations before assessment, and not taking basic tool-related techniques for granted.
References
Artigue, M. (2002). Learning mathematics in a CAS environment: the genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7 (3), 245–274. https://doi.org/10.1023/A:1022103903080
Beller, M. (2013). Technologies in large-scale assessments: new directions, challenges, and opportunities. In M. von Davier, E. Gonzalez, I. Kirsch & K. Yamamoto (Eds.), The role of international large-scale assessments: perspectives from technology, economy, and educational research (pp. 25–45). Springer. https://doi.org/10.1007/978-94-007-4629-9_3
Bennett, R. E. (2002). Inexorable and inevitable: the continuing story of technology and assessment. Journal of Technology, Learning, and Assessment, 1 (1), 1–24. https://doi.org/10.1002/9780470712993.ch11
Borkulo, S. P. van, Chytas, C., Drijvers, P., Barendsen, E. & Tolboom, J. (2023). Spreadsheets in secondary school statistics education: using authentic data for computational thinking. Digital Experiences in Mathematics Education, 9, 420–443. https://doi.org/10.1007/s40751-023-00126-5
Brinkmann, S. & Kvale, S. (2018). Doing interviews. SAGE. https://doi.org/10.4135/9781529716665
Bryant, W. (2017). Developing a strategy for using technology-enhanced items in large-scale standardized tests. Practical Assessment, Research, and Evaluation, 22 (1), 1–10. https://doi.org/10.7275/70yb-dj34
Buteau, C., Gueudet, G., Muller, E., Mgombelo, J. & Sacristán, A. I. (2020). University students turning computer programming into an instrument for ”authentic” mathematical work. International Journal of Mathematical Education in Science and Technology, 51 (7), 1020–1041.
https://doi.org/10.1080/0020739X.2019.1648892
Chong, C.-K., Puteh, M. & Goh, S.-C. (2015). Framework to integrate spreadsheet into the teaching and learning of financial mathematics. Electronic Journal of Mathematics & Technology, 9 (1), 92–106.
Dettori, G., Garuti, R. & Lemut, E. (2002). From arithmetic to algebraic thinking by using a spreadsheet. In R. Sutherland, T. Rojano, A. Bell & R. Lins (Eds.), Perspectives on school algebra (pp. 191–207). Springer. https://doi.org/10.1007/0-306-47223-6_11
Drijvers, P. (2018). Digital assessment of mathematics: opportunities, issues and criteria. Mesure et Évaluation En Éducation, 41 (1), 41–66.
https://doi.org/10.7202/1055896ar
Drijvers, P., Godino, J., Font, V. & Trouche, L. (2013). One episode, two lenses. Educational Studies in Mathematics, 82 (1), 23–49. https://doi.org/10.1007/s10649-012-9416-8
Drijvers, P. & Gravemeijer, K. (2005). Computer algebra as an instrument: examples of algebraic schemes. In D. Guin, K. Ruthven & L. Trouche (Eds.), The didactical challenge of symbolic calculators: turning a computational device into a mathematical instrument (pp. 163–196). Springer.
https://doi.org/10.1007/0-387-23435-7_8
Drijvers, P., Kieran, C., Mariotti, M. A., Ainley, J., Andresen, M. et al. (2010). Integrating technology into mathematics education: theoretical perspectives. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology-rethinking the terrain: the 17th ICMI study (pp. 89–132). Springer. https://doi.org/10.1007/978-1-4419-0146-0_7
Guin, D. & Trouche, L. (2002). Mastering by the teacher of the instrumental genesis in CAS environments: necessity of instrumental orchestrations. ZDM, 34 (5), 204–211. https://doi.org/10.1007/BF02655823
Haspekian, M. (2005). An ”instrumental approach” to study the integration of a computer tool into mathematics teaching: the case of spreadsheets. International Journal of Computers for Mathematical Learning, 10 (2), 109–141. https://doi.org/10.1007/s10758-005-0395-z
Haspekian, M. (2014). Teachers’ instrumental geneses when integrating spreadsheet software. In A. Clark-Wilson, O. Robutti & N. Sinclair (Eds.), The mathematics teacher in the digital era: an international perspective on technology focused professional development (pp. 241–275). Springer. https://doi.org/10.1007/978-94-007-4638-1_11
Haspekian, M. & Fluckiger, C. (2022). Analyzing teachers’ views on the integration of computer science into mathematics teaching. In J. Hodgen, E. Geraniou, G. Bolondi & F. Ferretti (Eds.), Proceedings of CERME 12. ERME.
Hoyles, C. & Noss, R. (2003). What can digital technologies take from and bring to research in mathematics education? In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick & F. K. S. Leung (Eds.), Second international handbook of mathematics education (pp. 323–349). Kluwer.
https://doi.org/10.1007/978-94-010-0273-8_11
Messick, S. A. (1989). Validity. In R. L. Linn (Ed.), Educational measurement (3rd ed., pp. 13–103). American Council on Education/Macmillan.
Mills, C. & Breithaupt, K. (2016). Current issues in computer-based testing. In C. S. Wells, M. Faulkner-Bond & E. Hambleton (Eds.), Educational measurement: from foundations to future (pp. 208–220). Guilford.
Misfeldt, M. & Jankvist, U. T. (2018). Instrumental genesis and proof: understanding the use of computer algebra systems in proofs in textbook. In L. Ball, P. Drijvers, S. Ladel, H.-S. Siller, M. Tabach & C. Vale (Eds.), Uses of technology in primary and secondary mathematics education: tools, topics and trends (pp. 375–385). Springer. https://doi.org/10.1007/978-3-319-76575-4_22
Ndlovu, M., Wessels, D. & Villiers, M. de. (2011). An instrumental approach to modelling the derivative in Sketchpad. Pythagoras, 32 (2), Article 2.
https://doi.org/10.4102/pythagoras.v32i2.52
OECD (2018). PISA 2021 mathematics framework (second draft). OECD.
Özkale, A. & Özdemir Erdoğan, E. (2021). An instrumental genesis perspective on the students’ using spreadsheet for the interest concept and calculations. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 15 (2), 282–308. https://doi.org/10.17522/balikesirnef.1022733
Rabardel, P. (1995). Les hommes & les technologies: approche cognitive des instruments contemporains [Men and technologies – a cognitive approach to contemporary instruments]. Armand Colin.
Rabardel, P. (2002). People and technology: a cognitive approach to contemporary instruments. Université Paris. https://hal.archives-ouvertes.fr/file/index/docid/1020705/filename/people_and_technology.pdf
Sangwin, C. J. (2013). Computer aided assessment of mathematics. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199660353.001.0001
Stacey, K. & Wiliam, D. (2013). Technology and assessment in mathematics. In M. A. Clements, A. J. Bishop, C. Keitel, J. Kilpatrick & F. K. S. Leung (Eds.), Third international handbook of mathematics education (pp. 721–751). Springer. https://doi.org/10.1007/978-1-4614-4684-2_23
Sutherland, R. & Rojano, T. (1993). A spreadsheet approach to solving algebra problems. Journal of Mathematical Behavior, 12 (4), 353–383.
Tabach, M., Hershkowitz, R. & Arcavi, A. (2008). Learning beginning algebra with spreadsheets in a computer intensive environment. The Journal of Mathematical Behavior, 27 (1), 48–63. https://doi.org/10.1016/j.jmathb.2008.04.002
Thomas, M. O. J. (2009). Hand-held technology in the mathematics classroom: developing pedagogical technology knowledge. In J. Averill, D. Smith & R. Harvey (Eds.), Teaching secondary school mathematics and statistics: evidence-based practice (pp. 147–160). NZCER.
Topcu, A. (2011). Effects of using spreadsheets on secondary school students’ self-efficacy for algebra. International Journal of Mathematical Education in Science and Technology, 42 (5), 605–613. https://doi.org/10.1080/0020739X.2011.562311
Trouche, L. (2000). La parabole du gaucher et de la casserole à bec verseur: étude des processus d’apprentissage dans un environnement de calculatrices symboliques. Educational Studies in Mathematics, 41 (3), 239–264. https://doi.org/10.1023/A:1003939314034
Trouche, L. (2004). Managing the complexity of human/machine interactions in computerized learning environments: guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9 (3), 281–307.
https://doi.org/10.1007/s10758-004-3468-5
Trouche, L. (2005). An instrumental approach to mathematics learning in symbolic calculator environments. In D. Guin, K. Ruthven & L. Trouche (Eds.), The didactical challenge of symbolic calculators (pp. 137–162). Springer-Verlag. https://doi.org/10.1007/0-387-23435-7_7
Verillon, P. & Rabardel, P. (1995). Cognition and artifacts: a contribution to the study of though in relation to instrumented activity. European Journal of Psychology of Education, 10 (1), 77–101.
Vygotskij, L. S. (1978). Mind in society: the development of higher psychological processes. Harvard U.P.
Way, D. W., Davis, L. L., Keng, L. & Strain-Seymour, E. (2016). From standardization to personalization: the comparability of scores based on different testing conditions, modes, and devices. In F. Drasgow (Ed.), Technology and testing: improving educational and psychological measurement (pp. 260–284). Taylor & Francis. https://doi.org/10.4324/9781315871493-21
Yerushalmy, M., Nagari-Haddif, G. & Olsher, S. (2017). Design of tasks for online assessment that supports understanding of students’ conceptions. ZDM, 49 (5), 701–716. https://doi.org/10.1007/s11858-017-0871-7
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Mattias Winnberg

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.