The use of DGE and CAS to support mathematical thinking competency: a literature review
DOI:
https://doi.org/10.7146/nomad.v28i3-4.149267Abstract
Focusing on the potential that dynamic geometry environments (DGE) and computer algebra systems (CAS) offer for mathematical inquiries, this paper presents a literature review of the use of DGE and CAS in relation to the mathematical thinking competency (MTC) of the Danish competency framework (KOM). This specific competency concerns modes of thinking when engaging in mathematical inquiry. The 17 studies included in the review were analysed from the perspective of MTC, resulting in the identification of three ways to use DGE and CAS as tools in activities related to the MTC.
References
Artigue, M. (2010). The future of teaching and earning mathematics with digital technologies. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology-rethinking the terrain: the 17th ICMI study (pp. 463- 475). Springer. https://doi.org/10.1007/978-1-4419-0146-0_23
Boesen, J., Helenius, O., Bergqvist, E., Bergqvist, T., Lithner, J. et al. (2014). Developing mathematical competence: from the intended to the enacted curriculum. The Journal of Mathematical Behavior, 33, 72-87. https://doi.org/10.1016/j.jmathb.2013.10.001
Borba, M. C. & Villarreal, M. E. (2005). Humans-with-media and the reorganization of mathematical thinking: Information and communication technologies, modeling, visualization, and experimentation. Springer. https://doi.org/10.1007/b105001
Calder, N. (2012). The layering of mathematical interpretations through digital media. Educational Studies in Mathematics, 80, 269-285. https://doi.org/10.1007/s10649-011-9365-7
Choi-Koh, S. S. (2003). Effect of a graphing calculator on a 10th-grade student's study of trigonometry. The Journal of Educational Research, 96 (6), 359-369. https://doi.org/10.1080/00220670309596619
Dreyfus, T. (1991). Advanced mathematical thinking processes. In D. Tall (Ed.), Advanced mathematical thinking (pp. 25-41). Springer. https://doi.org/10.1007/0-306-47203-1_2
Drijvers, P., Kodde-Buitenhuis, H. & Doorman, M. (2019). Assessing mathematical thinking as part of curriculum reform in the Netherlands. Educational Studies in Mathematics, 102 (3), 435-456. https://doi.org/10.1007/s10649-019-09905-7
Duval, R. (2017). Understanding the mathematical way of thinking: the registers of semiotic representations. Springer. https://doi.org/10.1007/978-3-319-56910-9
Fonseca, D. S. & Franchi, R. H. (2016). Exploring the convergence of sequences in the embodied world using GeoGebra. Teaching Mathematics and its Applications, 35 (2), 88-101. https://doi.org/10.1093/teamat/hrw012
Geraniou, E. & Jankvist, U. T. (2019). Towards a definition of "mathematical digital competency". Educational Studies in Mathematics, 102 (1), 29-45. https://doi.org/10.1007/s10649-019-09893-8
Goos, M. & Kaya, S. (2020). Understanding and promoting students' mathematical thinking: a review of research published in ESM. Educational Studies in Mathematics, 103 (1), 7-25. https://doi.org/10.1007/s10649-019-09921-7
Guin, D. & Trouche, L. (1998). The complex process of converting tools into mathematical instruments: the case of calculators. International Journal of Computers for Mathematical Learning, 3 (3), 195-227. https://doi.org/10.1023/A:1009892720043
Højsted, I. H. (2020). Guidelines for utilizing affordances of dynamic geometry environments to support development of reasoning competency. Nordic Studies in Mathematics Education, 25 (2), 71-98.
Ismail, Z. B., Zeynivandnezhad, F., Mohammad, Y. B. & Weber, E. D. (2014). Computing in differential equations with mathematical thinking approach among engineering students. Proceedings of the 2014 International Conference on Teaching and Learning in Computing and Engineering (pp. 163-170). IEEE. https://doi.org/10.1109/LaTiCE.2014.39
Jankvist, U. T. & Misfeldt, M. (2015). CAS-induced difficulties in learning mathematics? For the Learning of Mathematics, 35 (1), 15-20.
Khalil, M., Sultana, N. & Khalil, U. (2017). Exploring of mathematical thinking and its development through geogebra. Journal of Educational Research, 20 (1), 83-99. Department of Education IUB, Pakistan.
Khalil, M., Khalil, U. & Haq, Z. ul (2019). Geogebra as a scaffolding tool for exploring analytic geometry structure and developing mathematical thinking of diverse achievers. International Electronic Journal of Mathematics Education, 14 (2), 427-434. https://doi.org/10.29333/iejme/5746
Leung, A. (2008). Dragging in a dynamic geometry environment through the lens of variation. International Journal of Computers for Mathematical Learning, 13 (2), 135-157. https://doi.org/10.1007/s10758-008-9130-x
Manouchehri, A. (2004). Using interactive algebra software to support a discourse community. The Journal of Mathematical Behavior, 23 (1), 37-62. https://doi.org/10.1016/j.jmathb.2003.12.003
Marton, F., Runesson, U. & Tsui, A. (2004). The space of learning. In F. Marton & A. Tsui (Eds.), Classroom discourse and the space of learning (pp. 3-40). Lawrence Erlbaum. https://doi.org/10.4324/9781410609762-7
Mason, J., Burton, L. & Stacey, K. (2010). Thinking mathematically (2nd ed.). Pearson Education.
Newman, M. & Gough, D. (2020). Systematic reviews in educational research: methodology, perspectives and application. In O. Zawacki-Richter, M. Kerres, S. Bedenlier, M. Bond & K. Buntins (Eds.), Systematic reviews in educational research: methodology, perspectives and application (pp. 3-22). Springer. https://doi.org/10.1007/978-3-658-27602-7_1
Niss, M. (2016). Mathematics standards and curricula under the influence of digital affordances: different notions, meanings and roles in different parts of the world. In M. Bates & Z. Usiskin (Eds.), Digital curricula in school mathematics (pp. 239-250). Information Age.
Niss, M., Bruder, R., Planas, N., Turner, R. & Villa-Ochoa, J. A. (2016). Survey team on: conceptualisation of the role of competencies, knowing and knowledge in mathematics education research. ZDM, 48 (5), 611-632. https://doi.org/10.1007/s11858-016-0799-3
Niss, M. & Højgaard, T. (2011). Competencies and mathematical learning: ideas and inspiration for the development of mathematics teaching and learning in Denmark (English ed.). Roskilde University. (Published in Danish in 2002)
Niss, M. & Højgaard, T. (2019). Mathematical competencies revisited. Educational Studies in Mathematics, 102, 9-28. https://doi.org/10.1007/s10649-019-09903-9
OECD (2017). PISA 2015 mathematics framework. In Pisa 2015 assessment and analytical framework: science, reading, mathematics, financial literacy and collaborative problem solving (revised ed., pp. 65-80). PISA, OECD Publishing. https://doi.org/10.1787/9789264281820-5-en
Pedersen, M. K. (2022). Processes of mathematical thinking competency in interactions with a digital tool. In E. Geraniou & U. T. Jankvist (Eds.), Mathematical competencies in the digital era (pp. 63-79). Springer. https://doi.org/10.1007/978-3-031-10141-0_4
Pedersen, M. K., Bach, C. C., Gregersen, R. M., Højsted, I. H. & Jankvist, U. T. (2021). Mathematical representation competency in relation to use of digital technology and task design - a literature review. Mathematics, 9 (4), 444. https://doi.org/10.3390/math9040444
Reyes-Rodriguez, A., Santos-Trigo, M. & Barrera-Mora, F. (2017). The construction of a square through multiple approaches to foster learners' mathematical thinking. Teaching Mathematics and its Applications, 36 (3), 167-181. https://doi.org/10.1093/teamat/hrw022
Santos-Trigo, M. (2004). The role of dynamic software in the identification and construction of mathematical relationships. The Journal of Computers in Mathematics and Science Teaching, 23 (4), 399.
Santos-Trigo, M. & Reyes-Rodriguez, A. (2016). The use of digital technology in finding multiple paths to solve and extend an equilateral triangle task. International Journal of Mathematical Education in Science and Technology, 47 (1), 58-81. https://doi.org/10.1080/0020739X.2015.1049228
Selden, J. & Selden, A. (1995). Unpacking the logic of mathematical statements. Educational Studies in Mathematics, 29 (2), 123-151. https://doi.org/10.1007/BF01274210
Selden A. & Selden J. (2005). Perspectives on advanced mathematical thinking. Mathematical Thinking and Learning, 7 (1), 1-13. https://doi.org/10.1207/s15327833mtl0701_1
Sherman, M. & Cayton, C. (2015). Using appropriate tools strategically for instruction. Mathematics Teacher, 109 (4), 306-310. https://doi.org/10.5951/mathteacher.109.4.0306
Silva, R. S. R. da, Barbosa, L. M., Borba, M. C. & Ferreira, A. L. A. (2021). The use of digital technology to estimate a value of pi: teachers' solutions on squaring the circle in a graduate course in Brazil. ZDM, 53, 605-619. https://doi.org/10.1007/s11858-021-01246-1
Tall, D. (1991). Advanced mathematical thinking: mathematics education library (Vol. 11). Springer. https://doi.org/10.1007/0-306-47203-1
Touval, A. (1997). Investigating a definite integral - from graphing calculator to rigorous proof. The Mathematics Teacher, 90 (3), 230. https://doi.org/10.5951/MT.90.3.0230
Trouche, L., Drijvers, P., Gueudet, G. & Sacristán, A. I. (2012). Technology-driven developments and policy implications for mathematics education. In M. Clements, A. Bishop, C. Keitel, J. Kilpatrick & F. Leung (Eds.), Third international handbook of mathematics education (pp. 753-789). Springer. https://doi.org/10.1007/978-1-4614-4684-2_24
Turgut, M. (2019). Sense-making regarding matrix representation of geometric transformations in R2: a semiotic mediation perspective in a dynamic geometry environment. ZDM, 51 (7), 1199-1214. https://doi.org/10.1007/s11858-019-01032-0
Villa-Ochoa, J. A. & Suárez-Téllez, L. (2021). Computer algebra systems and dynamic geometry for mathematical thinking. In M. Danesi (Ed.), Handbook of cognitive mathematics (pp. 1-27). Springer International. https://doi.org/10.1007/978-3-030-44982-7_36-1
Vinner, S. (1991). The role of definitions in the teaching and learning of mathematics. In D. Tall (Ed.), Advanced mathematical thinking (pp. 65-81). Springer. https://doi.org/10.1007/0-306-47203-1_5
Williams, S. R. & Leathem, K. R. (2017). Journal quality in mathematics education. Journal for Research in Mathematics Education, 48 (4), 369-396. https://doi.org/10.5951/jresematheduc.48.4.0369
Yao, X. Q. & Manouchehri, A. (2019). Middle school students' generalizations about properties of geometric transformations in a dynamic geometry environment. Journal of Mathematical Behavior, 55, 100703. https://doi.org/10.1016/j.jmathb.2019.04.002
Zeynivandnezhad, F. & Bates, R. (2018). Explicating mathematical thinking in differential equations using a computer algebra system. International Journal of Mathematical Education in Science and Technology, 49 (5), 680-704. https://doi.org/10.1080/0020739X.2017.1409368
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.