Tasks, tools, and mediated actions – promoting collective theoretical work on algebraic expressions

Authors

  • Inger Eriksson
  • Jenny Fred
  • Anna-Karin Nordin
  • Martin Nyman
  • Sanna Wettergren

Abstract

The aim of this article is to exemplify and discuss what teachers using learning activity need to consider when planning and supporting students’ collective theoretical work on algebraic expressions. Data are from two iteratively developed research lessons in two grade 7 classes. The analysis focuses on students’ tool-mediated actions, the mathematical content processed, how the content is dealt with, and on identifying the crucial aspects that enable collective theoretical work. The result provides examples of how the content of the task, its design, and its tools, as well as the teacher’s and students’ tool-mediated actions are crucial factors in the promotion of collective theoretical work.

References

Arievitch, I. M. (2017). Beyond the brain: an agentive activity perspective on mind, development, and learning. Sense Publishers. https://doi.org/10.1007/978-94-6351-104-9

Blanton, M., Stephens, A., Knuth, E., Gardiner, A. M., Isler, I. & Kim, J-S. (2015). The development of children's algebraic thinking: the impact of a comprehensive early algebra intervention in third grade. Journal for Research in Mathematics Education, 46 (1), 39-87. https://doi.org/10.5951/jresematheduc.46.1.0039

Bråting, K., Hemmi, K. & Madej, L. (2018). Teoretiska och praktiska perspektiv på generaliserad aritmetik [Theoretical and practical perspectives on generalized arithmetic]. In J. Häggström, Y. Liljekvist, J. Bergman Ärlebäck, M. Fahlgren & O. Olande (Eds.), Perspectives on professional development of mathematics teachers. Proceedings of MADIF 11 (pp. 27-36). NCM & SMDF.

Cai, J. & Knuth, E. (Eds.). (2011). Early algebraization: a global dialogue from multiple perspectives. Springer. https://doi.org/10.1007/978-3-642-17735-4

Carlgren, I., Eriksson, I. & Runesson, U. (2017). Learning study. In I. Carlgren (Ed.), Undervisningsutvecklande forskning. Exemplet learning study [Practice- development research. The example of learning study] (pp. 17-30). Gleerups.

Davydov, V. V. (2008). Problems of developmental instruction. A theoretical and experimental psychological study. Nova Science.

Davydov, V. V. & Rubtsov, V. V. (2018). Developing reflective thinking in the process of learning activity. Journal of Russian & East European Psychology, 55 (4-6), 287-571. https://doi.org/10.1080/10610405.2018.1536008

Davydov, V. V., Slobodchikov, V. I. & Tsuckerman, G. A. (2003). The elementary school students as an agent of learning activity. Journal of Russian & East European Psychology, 41 (5), 63-76. https://doi.org/10.2753/RPO1061-0405410563

Dewey, J. (2013). Experience and nature. Read Books. (Original work publ. 1929) https://doi.org/10.1037/13377-000

Emanuelsson, J. & Sahlström, F. (2008). The price of participation: teacher control versus student participation in classroom interaction. Scandinavian Journal of Educational Research, 52 (2), 205-223. https://doi.org/10.1080/00313830801915853

Engeström, Y. & Sannino, A. (2010). Studies of expansive learning: foundations, findings and future challenges. Educational Research Review, 5 (1), 1-24. https://doi.org/10.1016/j.edurev.2009.12.002

Eriksson, I. (2015). Constitution of objects in DWR activity. In T. Hansson (Ed.), Contemporary approaches to Activity theory. Interdisciplinary perspectives on human behavior (pp. 304-321). IGI Global. https://doi.org/10.4018/978-1-4666-6603-0.ch018

Eriksson, I., Wettergren, S., Fred, J., Nordin, A.-K., Nyman, M. & Tambour, T. (2019). Materialisering av algebraiska uttryck i helklassdiskussioner med lärandemodeller som medierande redskap i årskurs 1 och 5 [Materialization of algebraic expressions in whole-class discussions with learning models as mediating tools in grade 1 and 5]. Nordic Studies in Mathematics Education, 24 (3-4), 86-106.

Gorbov, S. F. & Chudinova, E. V. (2000). Deystviye modelirovaniya v uchebnoy deyatel'nosti shkol'nikov (k postanovke problemy) [The effect of modeling on the students' learning (regarding problem formulation)]. Psychological Science and Education, 2, 96-110.

Hemmi, K., Bråting, K. & Lepik, M. (2021). Curricular approaches to algebra in Estonia, Finland and Sweden - a comparative study. Mathematical Thinking and Learning, 23 (1), 49-71. https://doi.org/10.1080/10986065.2020.1740857

Kaput, J., Carraher, D. & Blanton, M. (Eds.). (2008). Algebra in the early grades. Routledge. https://doi.org/10.4324/9781315097435

Kieran, C. (2004). Algebraic thinking in the early grades. What is it? The Mathematics Educator, 8 (1), 139-151. https://gpc-maths.org/data/documents/kieran2004.pdf

Kieran, C. (2018). Seeking, using, and expressing structure in numbers and numerical operations: a fundamental path to developing early algebraic thinking. In C. Kieran (Ed.), Teaching and learning algebraic thinking with 5- to 12-year-olds: the global evolution of an emerging field of research and practice (pp. 79-105). Springer. https://doi.org/10.1007/978-3-319-68351-5_4

Kieran, C., Pang, J., Schifter, D. & Ng, S. F. (2016). Early algebra research into its nature, its learning, its teaching. Springer. https://doi.org/10.1007/978-3-319-32258-2

Krutetskii, V. D. (1976). The psychology of mathematical abilities in school children. The University of Chicago Press.

Larsson, M. (2015). Orchestrating mathematical whole-class discussions in the problem-solving classroom: theorizing challenges and support for teachers [Doctoral thesis]. Mälardalen University. http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A865533&dswid=-7606

Larsson, M. & Ryve, A. (2011). Effective teaching through problem solving by sequencing and connecting student solutions. In G. H. Gunnarsdóttir, F. Hreinsdóttir, G. Pálsdóttir, M. Hannula, M. Hannula-Sormunen et al. (Eds.), Proceedings of NORMA11 (pp. 425-434). University of Iceland Press.

Leontiev, A. N. (1978). Activity, consciousness, and personality. Prentice-Hall.

Liljedahl, P. (2016). Building thinking classrooms: conditions for problem- solving. In P. Felmer, E. Pehkonen & J. Kilpatrick (Eds.), Posing and solving mathematical problems: advances and new perspectives (pp. 361-386). Springer. https://doi.org/10.1007/978-3-319-28023-3_21

Linell, P. (1994). Transkription av tal och samtal: teori och praktik [Transcription of speech and conversation: theory and practice]. Linköping University.

Mehan, H. (1979). Learning lessons. Harvard University Press. https://doi.org/10.4159/harvard.9780674420106

Nordin, A.-K. & Boistrup, L. B. (2018). A framework for identifying mathematical arguments as supported claims created in day-to-day classroom interactions. Journal of Mathematical Behavior, 51, 15-27. https://doi.org/10.1016/j.jmathb.2018.06.005

Oers, B. van (2009). Emergent mathematical thinking in the context of play. Educational Studies in Mathematics, 74, 23-37. https://doi.org/10.1007/s10649-009-9225-x

Radford, L. (2021). Davydov's concept of the concept and its dialectical materialist background. Educational Studies in Mathematics, 106, 327-342. https://doi.org/10.1007/s10649-020-09959-y

Repkin, V. V. (2003). Developmental teaching and learning activity. Journal of Russian & East European Psychology, 41 (5), 10-33. https://doi.org/10.2753/RPO1061-0405410510

Roth, W.-M. & Radford, L. (2011). A cultural-historical perspective on mathematics teaching and learning. Sense. https://doi.org/10.1007/978-94-6091-564-2

Ryve, A., Larsson, M. & Nilsson, P. (2013). Analysing content and participation in classroom discourse: dimensions of variation, mediating tools and conceptual accountability. Scandinavian Journal of Educational Research, 57 (1), 101-114. https://doi.org/10.1080/00313831.2011.628689

Schmittau, J. (2004). Vygotskian theory and mathematics education: resolving the conceptual procedural dichotomy. European Journal of Psychology of Education, 19 (1), 19-43. https://doi.org/10.1007/BF03173235

Schwartz, D. L., Chase, C. C., Oppezzo, M. & Chin, D. B. (2011). Practicing versus inventing with contrasting cases: the effects of telling first on learning and transfer. Journal of Educational Psychology, 103 (4), 759-775. https://doi.org/10.1037/a0025140

Sfard, A. (2008). Thinking as communicating: human development, the growth of discourses, and mathematizing. Cambridge University Press. https://doi.org/10.1017/CBO9780511499944

Stacey, K. & Chick, H. (2004). Solving the problem with algebra. In K. Stacey, H. Chick & M. Kendal (Eds.), The future of the teaching and learning of algebra: the 12th ICMI study (pp. 1-20). Springer. https://doi.org/10.1007/1-4020-8131-6_1

Stein, M. K., Boaler, J. & Silver, E. A. (2003). Teaching mathematics through problem solving: research perspectives. In H. L. Schoen & R. I. Charles (Eds.), Teaching mathematics through problem solving: grades 6-12 (pp. 245- 256). NCTM.

Taflin, E. (2007). Matematikproblem i skolan: för att skapa tillfällen till lärande [Mathematics problems in school: to create opportunities for learning] [Doctoral thesis]. Umeå University. http://bit.ly/2JrSAq1

Vygotsky, L. S. (1978). Mind in society: the development of higher psychological processes. Harvard University Press.

Warren, E., Trigueros, M. & Ursini, S. (2016). Research on the learning and teaching of algebra. In Á. Gutiérrez, G. C. Leder & P. Boero (Eds.), The second handbook of research on the psychology of mathematics education. The journey continues (pp. 73-108). Sense. https://doi.org/10.1007/978-94-6300-561-6_3

Wartofsky, M. (1979). Models, representation and the scientific understanding. D. Reidel. https://doi.org/10.1007/978-94-009-9357-0_10

Wettergren, S., Eriksson, I. & Tambour, T. (2021). Yngre elevers uppfattningar av det matematiska i algebraiska uttryck [Younger students experiences of the mathematics in algebraic expressions]. LUMAT. International Journal on Math, Science and Technology Education, 9 (1), 1-28. https://doi.org/10.31129/LUMAT.9.1.1377

Zuckerman, G. (2004). Development of reflection through learning activity. European Journal of Psychology of Education, 19 (1), 9-18. https://doi.org/10.1007/BF03173234

Downloads

Published

2021-10-01

How to Cite

Eriksson, I., Fred, J., Nordin, A.-K., Nyman, M., & Wettergren, S. (2021). Tasks, tools, and mediated actions – promoting collective theoretical work on algebraic expressions. NOMAD Nordic Studies in Mathematics Education, 26(3-4), 29–52. Retrieved from https://tidsskrift.dk/NOMAD/article/view/149169

Issue

Section

Articles