Towards a technocritical mathematics education
Abstract
Taking its departure point in critical mathematics education, mathematical competencies, and the use of digital technologies in mathematics teaching and learning, the paper sets out to discuss and describe a technocritical mathematics education. Not least this is due to the increase of hidden mathematics in technology of society today, both inside and outside the classroom. It is argued that a technocritical mathematics education must enable students to exercise the processes of ”packing” and ”unpacking” (hidden) mathematics as part of becoming citizens in a modern society. The paper raises the questions of what mathematical cases might enable students to develop competence with regard to these processes, and what might characterise such mathematical cases. Part of the answer to this point is a so-called embedded ”matryoshka doll” feature of such mathematical cases. Two examples of mathematics-based technologies – public-key cryptography and blockchains for cryptocurrency – on which our modern-day society are deeply dependant are displayed and discussed in the light of a technocritical mathematics education.
References
ANOM. (2023, October 5). In Wikipedia. https://en.wikipedia.org/wiki/ANOM
Buchberger, B. (1990). Should students learn integration rules? ACM SIGSAM Bulletin, 24 (1), 10-17. https://doi.org/10.1145/382276.1095228
Buchberger, B. (2002). Computer algebra: the end of mathematics? ACM SIGSAM Bulletin, 36 (1), 3-9. https://doi.org/10.1145/565145.565147
Buiter, W. H. (2022, February, 8). Outlaw cryptocurrencies now. Project Syndicate. https://www.project-syndicate.org/commentary/outlaw-cryptocurrencies-now-by-willem-h-buiter-2022-02
Cedillo, T. & Kieran, C. (2003). Initiating students into algebra with symbol-manipulating calculators. In J. T. Fey, A. Cuoco, C. Kieran, L. McMullin & R. M. Zbiek (Eds.), Computer algebra systems in secondary school mathematics education (pp. 219-239). NCTM.
Cevikbas, M., Greefrath, G. & Siller, H.-S. (2023). Advantages and challenges of using digital technologies in mathematical modelling education - a descriptive systematic literature review. Frontiers in Education, 8, Article 1142556. https://doi.org/10.3389/feduc.2023.1142556
D'Ambrosio, U. (1994). Cultural framing of mathematics teaching and learning. In R. Biehler, R. W. Scholz, R. Strässer & B. Winkelmann (Eds.), Didactics of mathematics as a scientific discipline (pp. 443-455). Kluwer.
Diffie, W. & Hellman, M. E. (1976). New directions in cryptography. IEEE Transactions on Information Theory, 22 (6), 644-654. https://doi.org/10.1109/TIT.1976.1055638
Dreyfus, T. (1994) The role of cognitive tools in mathematics education. In R. Biehler, R. W. Scholz, R. Strässer & B. Winkelmann (Eds.), Didactics of mathematics as a scientific discipline (pp. 201-211). Kluwer.
Drijvers, P. (1995). White-box/black-box revisited. The International Derive Journal, 2 (1), 3-14.
Geiger, V. (2017). Designing for mathematical applications and modelling tasks in technology rich environments. In A. Leung & A. Baccaglini-Frank (Eds), Digital technologies in designing mathematics education tasks (pp. 285-301). Springer. https://doi.org/10.1007/978-3-319-43423-0_14
Harari, Y. N. (2016). Homo deus: a brief history of tomorrow. Random House. https://doi.org/10.17104/9783406704024
Heid, M. K., Thomas, M. O. J. & Zbiek, R. M. (2012). How might computer algebra systems change the role of algebra in the school curriculum?. In M. A. (Ken) Clements, A. J. Bishop, C. Keitel, J. Kilpatrick & F. K. S Leung (Eds.), Third international handbook of mathematics education (pp. 597-641). Springer. https://doi.org/10.1007/978-1-4614-4684-2_20
Hoyles, C., Noss, R., Kent, P. & Bakker, A. (2010). Improving mathematics at work: the need for techno-mathematical literacies. Routledge. https://doi.org/10.4324/9780203854655
Jankvist, U. T. (2011). Anchoring students' meta-perspective discussions of history in mathematics. Journal of Research in Mathematics Education, 42 (4), 346-385. https://doi.org/10.5951/jresematheduc.42.4.0346
Jankvist, U. T. & Geraniou, E. (2021). "Whiteboxing" the content of a formal mathematical text in a dynamic geometry environment. Digital Experiences in Mathematics Education, 7 (2), 222-246. https://doi.org/10.1007/s40751-021-00088-6
Jankvist, U. T. & Misfeldt, M. (2015). CAS-induced difficulties in learning mathematics? For the Learning of Mathematics, 35 (1), 15-20.
Jankvist, U. T. & Misfeldt, M. (2021). Old frameworks - new technologies. Canadian Journal of Science, Mathematics, and Technology Education, 21 (1), 441-455. https://doi.org/10.1007/s42330-021-00164-4
Jankvist, U. T., Misfeldt, M. & Aguilar, M. S. (2019). What happens when CAS-procedures are objectified? - the case of "solve" and "desolve". Educational Studies in Mathematics, 101 (1), 67-81. https://doi.org/10.1007/s10649-019-09888-5
Jankvist, U. T. & Toldbod, B. (2005). Matematikken bag Mars-missionen: en empirisk undersøgelse af matematikken i MER med fokus på kildekodning og kanalkodning [The mathematics behind the Mars mission: An empirical study of mathematics in MER focusing on source coding and channel coding]. Tekster fra IMFUFA, 449. Roskilde University. http://thiele.ruc.dk/imfufatekster/pdf/449.pdf
Kallia, M., Borkulo, S. P. van, Drijvers, P., Barendsen, E. & Tolboom, J. (2021) Characterising computational thinking in mathematics education: a literature-informed Delphi study. Research in Mathematics Education, 23 (2), 159-187. https://doi.org/10.1080/14794802.2020.1852104
Lesh, R. & Doerr, H. M. (2003). Foundations of a models and modeling perspective on mathematics teaching, learning and problem solving. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism: models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 3-34). Lawrence Erlbaum.
Maass, K., Artigue, M., Burkhardt, H., Doorman, M., English, L. D. et al. (2022). Mathematical modelling - a key to citizenship education. In N. Buchholtz, B. Schwarz & K. Vorhölter (Eds.), Initiationen mathematikdidaktischer Forschung. Festschrift zum 70. Geburtstag von Gabriele Kaiser. Springer. https://doi.org/10.1007/978-3-658-36766-4_2
Misfeldt, M. & Jankvist, U. T. (2020). Teknokritisk matematikundervisning: at åbne den skjulte matematik i demokratiets tjeneste [Technocritical mathematics education: unpacking the hidden mathematics in the service of democracy]. In C. Hass & C. Matthiesen (Eds.), Fagdidaktik og demokrati (pp. 331-348). Samfundslitteratur.
Nabb, K. A. (2010). CAS as a restructuring tool in mathematics education. In P. Bogacki (Ed.), Electronic Proceedings of ICTCM 22 (pp. 247-259). http://archives.math.utk.edu/ICTCM/VOL22/R007/paper.pdf
Niss, M. (2016). Mathematics standards and curricula under the influence of digital affordances: different notions, meanings, and roles in different parts of the world. In M. Bates & Z. Usiskin (Eds.), Digital curricula in school mathematics (pp. 239-250). Information Age.
Niss, M. & Højgaard, T. (2011). Competencies and mathematical learning. Ideas and inspiration for the development of mathematics teaching and learning in Denmark. IMFUFA. http://milne.ruc.dk/imfufatekster/pdf/485web_b.pdf
Niss, M. & Højgaard, T. (2019). Mathematical competencies revisited. Educational Studies in Mathematics, 102 (1), 9-28. https://doi.org/10.1007/s10649-019-09903-9
Nunes, T., Carraher, T. N., Schliemann, A. D. & Carraher, D. W. (1993). Street mathematics and school mathematics. Cambridge University Press.
Pepin, B., Gueudet, G. & Choppin, J. (Eds.). (2023). Handbook of digital resources in mathematics education. Springer. https://doi.org/10.1007/978-3-030-95060-6
Pérez, A. (2018). A framework for computational thinking dispositions in mathematics education. Journal for Research in Mathematics Education, 49 (4), 424-461. https://doi.org/10.5951/jresematheduc.49.4.0424
Rivest, R. L., Shamir, A. & Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21 (2), 120-126. https://doi.org/10.1145/359340.359342
Skovsmose, O. (2004). Mathematics in action. Philosophy of Mathematics Education Journal, 18. https://socialsciences.exeter.ac.uk/education/research/centres/stem/publications/pmej/pome18/skovsmose_math_in_action_pme.htm
Skovsmose, O. (2020). Mathematization as social process. In S. Lerman (Ed.), Encyclopedia of mathematics education (2nd ed., pp. 605-608). Springer. https://doi.org/10.1007/978-3-030-15789-0_112
Skovsmose, O. (2023). Critical mathematics education. Springer. https://doi.org/10.1007/978-3-031-26242-5
Skovsmose, O. & Nielsen, L. (2014). Critical mathematics education. In A. J. Bishop, K. Clements, C. Keitel, J. Kilpatrick & C. Laborde (Eds.), International handbook of mathematics education (pp. 1257-1288). Springer. https://doi.org/10.1007/978-94-007-4978-8_34
Skovsmose, O. & Yasukawa, K. (2004). Formatting power of "mathematics in a package": a challenge for social theorising? Philosophy of Mathematics Education Journal, 18. https://education.exeter.ac.uk/research/centres/stem/publications/pmej/pome18/Skovsmose_formatting_power_of_mathematics.htm
Tamborg, A. L., Elicer, R., Bråting, K., Geraniou, E., Jankvist, U. T. & Misfeldt, M. (2023). The politics of computational thinking and programming in mathematics education: comparing curricula and resources in England, Sweden, and Denmark. In B. Pepin, G. Gueudet & J. Choppin (Eds.), Handbook of digital resources in mathematics education (pp. 1-27). Springer. https://doi.org/10.1007/978-3-030-95060-6_55-1
Van den Heuvel-Panhuizen, M. & Drijvers, P. (2020). Realistic mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (2nd ed., pp. 713-717). Springer. https://doi.org/10.1007/978-3-030-15789-0_170
Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K. et al. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25 (1), 127-147. https://doi.org/10.1007/s10956-015-9581-5
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49 (3), 33-35. https://doi.org/10.1145/1118178.1118215
Ye, H., Liang, B., Ng, O-L. & Chai, C. S. (2023). Integration of computational thinking in K-12 mathematics education: a systematic review on CT-based mathematics instruction and student learning. International Journal of STEM Education, 10, Article 3. https://doi.org/10.1186/s40594-023-00396-w
Zuboff, S. (2019). The age of surveillance capitalism: the fight for a human future at the new frontier of power. PublicAffairs.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.