Developing a frame for analysing different meanings of the concept of variable mediated by tasks in elementary-school mathematics textbooks

Authors

  • Anna-Maija Partanen
  • Pieti Tolvanen

DOI:

https://doi.org/10.7146/nomad.v24i3-4.149024

Abstract

Pupils’ studies in arithmetic can support the development of their algebraic thinking if arithmetic is taken as a starting point for generalising in sense-making discussions. One of the most prominent concepts in algebra is that of the variable, which can have many different meanings, depending on its context. In this paper, we develop a frame for content analysis of tasks in elementary-school mathematics textbooks. New categories for the meaning of variable are added to previous summaries, based on the literature review and the analysis. The developed frame can be used for analysing curricular materials, especially at the elementary-school level.

References

Asikainen, K., Forsback, M., Haapaniemi, S., Kalliola, A., Mörsky, S. et al., (2016). Tuhattaituri 2b (1.-2. painos). Helsinki: Otava.

Asikainen, K., Kiviluoma, P., Nyrhinen, K., Perälä, P., Rokka, P. et al., (2017). Tuhattaituri 5b (1. painos). Helsinki: Otava.

Benton, L., Hoyles, C., Kalas, I. & Noss, R. (2017). Bridging primary programming and mathematics: some findings of design research in England. Digital Experiences in Mathematics Education, 3 (2), 115-138. https://doi.org/10.1007/s40751-017-0028-x

Blanton, M. L., Brizuela, B. M., Gardiner, A. M., Sawrey, K. & Newman-Owens, A. (2017). A progression in first-grade children's thinking about variable and variable notation in functional relationships. Educational Studies in Mathematics, 95 (2), 181-202. https://doi.org/10.1007/s10649-016-9745-0

Blanton, M. L. & Kaput, J. J. (2004). Elementary grades students' capacity for functional thinking. In A. Fuglestad & M. J. Höines (Eds.), Proceedings of PME 28 (Vol. 2, pp. 135-142). Bergen University College.

Blanton, M. L., Levi, L., Crites, T., Dougherty, B. & Zbiek, R. M. (2011). Developing essential understanding of algebraic thinking for teaching mathematics in grades 3-5. Series in essential understandings. Reston: NCTM.

Blanton, M. L., Stephens, A. C., Knuth, E. J., Gardiner, A. M., Isler, I. & Kim, J.-S. (2015). The development of children's algebraic thinking? The impact of a comprehensive early algebra intervention in third grade. Journal for Research in Mathematics Education, 46 (1), 39-87. https://doi.org/10.5951/jresematheduc.46.1.0039

Brizuela, B. M., Blanton, M. L., Sawrey, K., Newman-Owens, A. & Murphy Gardiner, A. (2015). Children's use of variables and variable notation to represent their algebraic ideas. Mathematical Thinking and Learning, 17 (1), 34-63. https://doi.org/10.1080/10986065.2015.981939

Capraro, M. M. & Joffrion, H. (2006). Algebraic equations: Can middle-school students meaningfully translate from words to mathematical symbols? Reading Psychology, 27 (2-3), 147-164. https://doi.org/10.1080/02702710600642467

Carraher, D. W. & Schliemann, A. D. (2007). Early algebra and algebraic reasoning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 669-705). Charlotte: Information Age.

Davydov, V. V. (1975). The psychological problems of the "prenumerical" period of mathematics instruction. In L. P. Steffe (Ed.), Soviet studies in the psychology of learning and teaching mathematics (pp. 109-207). Chicago University.

Davydov, V. V., Gorbov, S. F., Mikulina, G. G. & Saveleva, O. V. (1999). Mathematics: class 1 (J. Schmittau, Ed.). Binghampton: State University of New York.

Dougherty, B. J. (2008). Measure up: a quantitative view of early algebra. In J. J. Kaput, D. W. Carraher & M. L. Blanton (Eds.), Algebra in the early grades (pp. 389-412). New York: Routledge. https://doi.org/10.4324/9781315097435-18

Ely, R. & Adams, A. E. (2012). Unknown, placeholder, or variable: What is x? Mathematics Education Research Journal, 24 (1), 19-38. https://doi.org/10.1007/s13394-011-0029-9

Finnish National Agency of Education (2014). Perusopetuksen opetussuunnitelman perusteet 2014 [The Finnish National Core Curriculum for Basic Education 2014]. Helsinki: Finnish National Agency of Education. Retrieved from https://www.oph.fi/sites/default/files/documents/perusopetuksen_opetussuunnitelman_perusteet_2014.pdf

Fujii, T. & Stephens, M. (2001). Fostering an understanding of algebraic generalisation through numerical expressions: the role of quasi-variables. In H. Chick, K. Stacey, J. Vincent & J. Vincent (Eds.), Proceedings of ICMI 12: the future of the teaching and learning of algebra (Vol. 1, pp. 258-264). University of Melbourne.

Hartikainen, S., Häggblom, L., Nousiainen, P., Pykäläinen, M., Renlund, T. & Silvander, Y. (2017). NeeViiKuu 4B (3. painos). Helsinki: Edukustannus.

Hartikainen, S., Hurmerinta, E., Häggblom, L., Sipilä, A.-R. & Väistö, M. (2017). YyKaaKoo 1A (5. painos). Helsinki: Edukustannus.

Kaput, J. J., Blanton, M. L. & Moreno, L. (2008). Algebra from a symbolization point of view. In J. J. Kaput, D. W. Carraher & M. L. Blanton (Eds.), Algebra in the early grades (pp. 19-55). New York: Routledge. https://doi.org/10.4324/9781315097435-3

Kieran, C. (1989). The early learning of algebra: a structural perspective. In S. Wagner & C. Kieran (Eds.), Research issues in the learning and teaching of algebra (Vol. 4, pp. 33-56). Reston: Lawrence Erlbaum. https://doi.org/10.4324/9781315044378-4

Kieran, C. (1992). The learning and teaching of school algebra. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 390-419). New York: Macmillan.

Kieran, C., Pang, J. S., Schifter, D. & Ng, S. F. (2016). Early algebra: research into its nature, its learning, its teaching. Cham: Springer. https://doi.org/10.1007/978-3-319-32258-2

Kilhamn, C. (2014). When does a variable vary? Identifying mathematical content knowledge for teaching variables. Nordic Studies in Mathematics Education, 19 (3-4), 83-100.

Kilhamn, C. & Bråting, K. (2019, February). Algebraic thinking in the shadow of programming. Paper presented at CERME 11, Utrecht, the Netherlands.

Krippendorff, K. (2013). Content analysis: an introduction to its methodology (3rd ed.). Thousand Oaks: SAGE.

Küchemann, D. (1981). Algebra. In K. Hart (Ed.), Children's understanding of mathematics: 11-16 (pp. 102-119). London: John Murray.

Linchevski, L. (1995). Algebra with numbers and arithmetic with letters: a definition of pre-algebra. The Journal of Mathematical Behavior, 14 (1), 113-120. https://doi.org/10.1016/0732-3123(95)90026-8

Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C. et al. (2014). Computationatl thinking in K-9 education. In M. Goldweber (Ed.), Proceedings of the Working group reports of the 2014 conference on Innovation & technology in computer science education (pp. 1-29). New York: ACM. https://doi.org/10.1145/2713609.2713610

Philipp, R. A. (1992). The many uses of algebraic variables. The Mathematics Teacher, 85 (7), 557-561. https://doi.org/10.5951/MT.85.7.0557

Rezat, S. & Sträßer, R. (2012). From the didactical triangle to the socio- didactical tetrahedron: artifacts as fundamental constituents of the didactical situation. ZDM, 44 (5), 641-651. https://doi.org/10.1007/s11858-012-0448-4

Rezat, S. & Sträßer, R. (2015). Methodological issues and challenges in research on mathematics textbooks. Nordic Studies in Mathematics Education, 20 (3-4), 247-266.

Rinne, S., Sintonen, A.-M., Uus-Leponiemi, T. & Uus-Leponiemi, M. (2017a). Kymppi 3, syksy (6.-7. painos). Helsinki: SanomaPro.

Rinne, S., Sintonen, A.-M., Uus-Leponiemi, T. & Uus-Leponiemi, M. (2017b). Kymppi 6, kevät (1. painos). Helsinki: SanomaPro.

Rojano, T. & Sutherland, R. (2001). Arithmetic world - algebra world. In H. Chick, K. Stacey, J. Vincent & J. Vincent (Eds.), Proceedings of ICMI 12: the future of the teaching and learning of algebra (pp. 515-522). University of Melbourne.

Stephens, A. C. (2005). Developing students' understanding of variable. Mathematics Teaching in the Middle School, 11 (2), 96-100. https://doi.org/10.5951/MTMS.11.2.0096

Usiskin, Z. (1988). Conceptions of school algebra and uses of variables. In A. F. Coxford & A. P. Shulte (Eds.), The ideas of algebra, K-12 (pp. 8-19). Reston: NCTM.

Vygotsky, L. S. (1997). The instrumental method in psychology. In R. W. Rieber & J. Wollock (Eds.), The collected works of L. S. Vygotsky. Volume 3. Problems of the theory and history of psychology (pp. 85-89). New York: Plenum Press. https://doi.org/10.1007/978-1-4615-5893-4_7

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49 (3), 33-35. https://doi.org/10.1145/1118178.1118215

Downloads

Published

2019-11-01

How to Cite

Partanen, A.-M., & Tolvanen, P. (2019). Developing a frame for analysing different meanings of the concept of variable mediated by tasks in elementary-school mathematics textbooks. NOMAD Nordic Studies in Mathematics Education, 24(3-4), 59–79. https://doi.org/10.7146/nomad.v24i3-4.149024

Issue

Section

Articles