Tilgange til tidlig algebra

Authors

  • Thomas Kaas

DOI:

https://doi.org/10.7146/nomad.v24i3-4.149022

Abstract

Undervisning af 6–12 årige i algebra og algebraisk tænkning har under betegnelsen ”tidlig algebra” gradvist etableret sig som forskningsområde og undervisningspraksis i et stigende antal lande. På basis af et hermeneutisk inspireret litteraturstudie karakteriserer denne artikel de indholdsmæssige tilgange til undervisning i tidlig algebra, som forskningslitteratur i perioden 1995–2017 giver. Analysen har resulteret i et rammeværk for tilgange til tidlig algebraundervisning, som præsenteres og diskuteres. Artiklen konkluderer bl.a., at undervisning i tidlig algebra typisk tager afsæt i elevers arbejde med tal, kvantiteter og/eller funktionelle sammenhænge, og at elevers algebraiske tænkning søges udviklet gennem aktiviteter, der enten har opdagelser af generelle egenskaber og egenskaber eller ræsonnementer vedrørende ukendte talstørrelser som fokus. Forskelle mellem de forskellige tilgange vedrører desuden den rolle, som repræsentationer og kontekster har i undervisningen.

References

Abramovich, S. (2006). Early algebra with graphics software as a type II application of technology. Computers in the Schools, 22 (3), 13. https://doi.org/10.1300/J025v22n03_03

Bastable, V. & Schifter, D. (2008). Classroom stories: examples of elementary students engaged in early algebra. Algebra in the early grades, 165-184. https://doi.org/10.4324/9781315097435-8

Blanton, M., Brizuela, B. M., Gardiner, A. M., Sawrey, K. & Newman-Owens, A. (2015). A learning trajectory in 6-year-olds' thinking about generalizing functional relationships. Journal for Research in Mathematics Education, 46 (5), 511-558. https://doi.org/10.5951/jresematheduc.46.5.0511

Blanton, M. L. & Kaput, J. J. (2005). Characterizing a classroom practice that promotes algebraic reasoning. Journal for Research in Mathematics Education, 36 (5), 412-446. https://doi.org/10.2307/30034944

Blanton, M. L. & Kaput, J. J. (2011). Functional thinking as a route into algebra in the elementary grades. In J. Cai & E. Knuth (Eds.), Early algebraization (pp. 5-23). Berlin: Springer. https://doi.org/10.1007/978-3-642-17735-4_2

Boell, S. K. & Cecez-Kecmanovic, D. (2010). Literature reviews and the hermeneutic circle. Australian Academic & Research Libraries, 41 (2), 129-144. https://doi.org/10.1080/00048623.2010.10721450

Boell, S. K. & Cecez-Kecmanovic, D. (2014). A hermeneutic approach for conducting literature reviews and literature searches. CAIS, 34, 12. https://doi.org/10.17705/1CAIS.03412

Boell, S. K. & Cecez-Kecmanovic, D. (2015). On being "systematic" in literature reviews in IS. Journal of Information Technology, 30 (2), 161-173. https://doi.org/10.1057/jit.2014.26

Brizuela, B. & Schliemann, A. (2004). Ten-year-old students solving linear equations. For the Learning of Mathematics, 24 (2), 33-40. http://www.jstor.org/stable/40248456

Brizuela, B. M., Blanton, M., Sawrey, K., Newman-Owens, A. & Gardiner, A. M. (2015). Children's use of variables and variable notation to represent their algebraic ideas. Mathematical Thinking and Learning, 17 (1), 34-63. https://doi.org/10.1080/10986065.2015.981939

Brizuela, B. M., Martinez, M. V. & Cayton-Hodges, G. A. (2013). The impact of early algebra: results from a longitudinal intervention. REDIMAT - Journal of Research in Mathematics Education, 2 (2), 209-241. https://doi.org/10.4471/redimat.2013.28

Cai, J. & Knuth, E. (2011). Early algebraization: a global dialogue from multiple perspectives. Berlin: Springer. https://doi.org/10.1007/978-3-642-17735-4

Carpenter, T. P., Franke, M. L. & Levi, L. (2003). Thinking mathematically: integrating arithmetic and algebra in elementary school. Portsmouth: Heinemann.

Carraher, D. W., Martinez, M. V. & Schliemann, A. D. (2008). Early algebra and mathematical generalization. ZDM, 40 (1), 3-22. https://doi.org/10.1007/s11858-007-0067-7

Carraher, D. W. & Schliemann, A. D. (2007). Early algebra. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 669-705). Charlotte: NCTM.

Carraher, D. W., Schliemann, A. D. & Schwartz, J. (2008). Early algebra is not the same as algebra early. In J. Kaput, D. Carraher & M. Blanton (Eds.), Algebra in the early grades (pp. 235-272). New York: Lawrence Erlbaum. https://doi.org/10.4324/9781315097435-12

Cooper, T. J. & Warren, E. (2011). Years 2 to 6 students' ability to generalise: models, representations and theory for teaching and learning. In J. Cai & E. Knuth (Eds.), Early algebraization: a global dialogue from multiple perspectives (pp. 187-214). Berlin: Springer. https://doi.org/10.1007/978-3-642-17735-4_12

Dougherty, B. (2008). Measure up: a quantitative view of early algebra. In J. Kaput, D. Carraher & M. Blanton (Eds.), Algebra in the early grades (pp. 389- 412). New York: Lawrence Erlbaum. https://doi.org/10.4324/9781315097435-18

Dougherty, B. J. & Slovin, H. (2004). Generalized diagrams as a tool for young children's problem solving. In M. Høines & A. B. Fuglestad (Eds.), Proceedings of PME 28 (Vol. 2, pp. 295-302). Bergen University College.

Earnest, D. & Balti, A. A. (2008). Instructional strategies for teaching algebra in elementary school: findings from a research-practice collaboration. Teaching Children Mathematics, 14 (9), 518-522. https://doi.org/10.5951/TCM.14.9.0518

Empson, S. B., Levi, L. & Carpenter, T. P. (2011). The algebraic nature of fractions: developing relational thinking in elementary school. In J. Cai & E. Knuth (Eds.), Early algebraization: a global dialogue from multiple perspectives (pp. 409-428). Berlin: Springer. https://doi.org/10.1007/978-3-642-17735-4_22

Ferrara, F. & Sinclair, N. (2016). An early algebra approach to pattern generalisation: actualising the virtual through words, gestures and toilet paper. Educational Studies in Mathematics, 92 (1), 1-19. https://doi.org/10.1007/s10649-015-9674-3

Fuchs, B., Lynn, S., Zumeta, R. O., Schumacher, R. F., Powell, S. R. et al. (2010). The effects of schema-broadening instruction on second graders' word- problem performance and their ability to represent word problems with algebraic equations: a randomized control study. The Elementary School Journal, 110 (4), 440-463. https://doi.org/10.1086/651191

Fujii, T. & Stephens, M. (2008). Using number sentences to introduce the idea of variable. In C. E. Greenes & R. Rubenstein (Eds.), Algebra and algebraic thinking in school mathematics (pp. 127-140). Reston: NCTM.

Gough, D., Oliver, S. & Thomas, J. (2017). An introduction to systematic reviews (2. ed.). London: SAGE Publications. https://doi.org/10.53841/bpsptr.2017.23.2.95

Greenhalgh, T., Robert, G., Macfarlane, F., Bate, P., Kyriakidou, O. & Peacock, R. (2005). Storylines of research in diffusion of innovation: a meta-narrative approach to systematic review. Social Science & Medicine, 61 (2), 417-430. https://doi.org/10.1016/j.socscimed.2004.12.001

Heuvel-Panhuizen, M. van den, Kolovou, A. & Robitzsch, A. (2013). Primary school students' strategies in early algebra problem solving supported by an online game. Educational Studies in Mathematics, 84 (3), 281-307. https://doi.org/10.1007/s10649-013-9483-5

Hewitt, D. (2012). Young students learning formal algebraic notation and solving linear equations: Are commonly experienced difficulties avoidable? Educational Studies in Mathematics, 81 (2), 139-159. https://doi.org/10.1007/s10649-012-9394-x

Hewitt, D. (2014). A symbolic dance: the interplay between movement, notation, and mathematics on a journey toward solving equations. Mathematical Thinking and Learning, 16 (1), 1-31. https://doi.org/10.1080/10986065.2014.857803

Jacobs, V. R., Franke, M. L., Carpenter, T. P., Levi, L. & Battey, D. (2007). Professional development focused on children's algebraic reasoning in elementary school. Journal for Research in Mathematics Education, 38 (3), 258-288. https://doi.org/10.2307/30034868

Jensen, K. M. (2017). Folkeskoleloven med bemærkninger (22. udgave ed.). København: Kommuneforlaget.

Kaput, J. J. (2008). What is algebra? What is algebraic reasoning. In J. J. Kaput, D. Carraher & M. L. Blanton (Eds.), Algebra in the early grades (pp. 5-17). New York: Lawrence Erlbaum. https://doi.org/10.4324/9781315097435-2

Ketterlin-Geller, L. R. & Chard, D. J. (2011). Algebra readiness for students with learning difficulties in grades 4-8: support through the study of number. Australian Journal of Learning Difficulties, 16 (1), 65-78. https://doi.org/10.1080/19404158.2011.563478

Kieran, C. (2004). Algebraic thinking in the early grades: What is it? The Mathematics Educator, 8 (1), 139-151.

Kieran, C. (2006). Research on the learning and teaching of algebra. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: past, present and future (pp. 11-49). Rotterdam: Sense Publishers. https://doi.org/10.1163/9789087901127_003

Kieran, C., Pang, J., Schifter, D. & Ng, S. F. (2016). Early algebra : research into its nature, its learning, its teaching. In G. Kaiser (Ed.), ICME-13 topical surveys. https://doi.org/10.1007/978-3-319-32258-2

Kirshner, D. (2001). The structural algebra option revisited. In R. Sutherland, T. Rojano, A. Bell & L. Lee (Eds.), Perspectives on school algebra (pp. 83-98). Dortrecht: Kluwer. https://doi.org/10.1007/0-306-47223-6_5

Knuth, E. J., Stephens, A. C., McNeil, N. M. & Alibali, M. W. (2006). Does understanding the equal sign matter? Evidence from solving equations. Journal for Research in Mathematics Education, 36 (4), 297-312. https://doi.org/10.2307/30034852

Lannin, J., Barker, D. & Townsend, B. (2006). Algebraic generalisation strategies: factors influencing student strategy selection. Mathematics Education Research Journal, 18 (3), 3-28. https://doi.org/10.1007/BF03217440

Lannin, J. K. (2005). Generalization and justification: the challenge of introducing algebraic reasoning through patterning activities. Mathematical Thinking and Learning, 7 (3), 231-258. https://doi.org/10.1207/s15327833mtl0703_3

Lannin, J. K., Townsend, B. E., Armer, N., Green, S. & Schneider, J. (2008). Developing meaning for algebraic symbols: possibilities and pitfall. Mathematics Teaching in the Middle School, 13 (8), 478-483. https://doi.org/10.5951/MTMS.13.8.0478

Leavy, A., Hourigan, M. & McMahon, Á. (2013). Early understanding of equality. Teaching Children Mathematics, 20 (4), 246-252. https://doi.org/10.5951/teacchilmath.20.4.0246

Lee, J.-E. (2006). Teaching algebraic expressions to young students: the three- day journey of "a + 2". School Science and Mathematics, 106 (2), 98. https://doi.org/10.1111/j.1949-8594.2006.tb18139.x

Lee, K., Khng, K. H., Ng, S. F. & Ng Lan Kong, J. (2013). Longer bars for bigger numbers? Children's usage and understanding of graphical representations of algebraic problems. Frontline Learning Research, 1 (1), 81-96. https://doi.org/10.14786/flr.v1i1.49

Lee, K., Ng, E. L. & Ng, S. F. (2009). The contributions of working memory and executive functioning to problem representation and solution generation in algebraic word problems. Journal of Educational Psychology, 101 (2), 373-387. https://doi.org/10.1037/a0013843

Lee, K., Ng, S. F., Bull, R., Pe, M. L. & Ho, R. H. M. (2011). Are patterns important? An investigation of the relationships between proficiencies in patterns, computation, executive functioning, and algebraic word problems. Journal of Educational Psychology, 103 (2), 269-281. https://doi.org/10.1037/a0023068

Lee, K., Ng, S. F., Pe, M. L., Ang, S. Y., Hasshim, M. N. A. M. & Bull, R. (2012). The cognitive underpinnings of emerging mathematical skills: executive functioning, patterns, numeracy, and arithmetic. British Journal of Educational Psychology, 82 (1), 82-99. https://doi.org/10.1111/j.2044-8279.2010.02016.x

Martinez, M. & Brizuela, B. M. (2006). A third grader's way of thinking about linear function tables. Journal of Mathematical Behavior, 25 (4), 285-298. https://doi.org/10.1016/j.jmathb.2006.11.003

Mason, J. (2008). Making use of children's powers to produce algebraic thinking. In J. J. Kaput, D. Carraher & M. L. Blanton (Eds.), Algebra in the early grades (pp. 57-94). New York: Lawrence Erlbaum. https://doi.org/10.4324/9781315097435-4

Matthews, P., Rittle-Johnson, B., McEldoon, K. & Taylor, R. (2012). Measure for measure: what combining diverse measures reveals about children's understanding of the equal sign as an indicator of mathematical equality. Journal for Research in Mathematics Education, 43 (3), 316-350. https://doi.org/10.5951/jresematheduc.43.3.0316

McGarvey, L. M. (2012). What is a pattern? Criteria used by teachers and young children. Mathematical Thinking and Learning, 14 (4), 310-337. https://doi.org/10.1080/10986065.2012.717380

McGarvey, L. M. (2013). Is it a pattern? Teaching Children Mathematics, 19 (9), 564-571. https://doi.org/10.5951/teacchilmath.19.9.0564

Molina, M., Castro, E. & Castro, E. (2009). Elementary students' understanding of the equal sign in number sentences. Electronic Journal of Research in Educational Psychology, 7 (1), 341-368. https://doi.org/10.25115/ejrep.v7i17.1345

Moss, J. & Beatty, R. (2006). Knowledge building in mathematics: supporting collaborative learning in pattern problems. International Journal of Computer-Supported Collaborative Learning, 1 (4), 441-465. https://doi.org/10.1007/s11412-006-9003-z

Mulligan, J. & Mitchelmore, M. (2009). Awareness of pattern and structure in early mathematical development. Mathematics Education Research Journal, 21 (2), 33-49. https://doi.org/10.1007/BF03217544

NCTM (1989). Curriculum and evaluation standards for school mathematics. Reston: NCTM.

NCTM (2000). Principles and standards for school mathematics. Reston: NCTM.

Ng, S. F. & Lee, K. (2009). The model method: Singapore children's tool for representing and solving algebraic word problems. Journal for Research in Mathematics Education, 40 (3), 282-313. https://doi.org/10.5951/jresematheduc.40.3.0282

NGA & CCSSO (2010). Common core state standards for mathematics. Washington: NGA & CCSSO. Retrieved from http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf

Papic, M. (2007). Promoting repeating patterns with young children - more than just alternating colours! Australian Primary Mathematics Classroom, 12 (3), 8-13.

Polly, D. (2011). Technology to develop algebraic reasoning. Teaching Children Mathematics, 17 (8), 472-478. https://doi.org/10.5951/teacchilmath.17.8.0472

Pors, N. O. & Johannsen, C. G. (Eds.) (2013). Evidens og systematiske reviews: en introduktion. Frederiksberg: Samfundslitteratur.

Powell, S. R. & Fuchs, L. S. (2014). Does early algebraic reasoning differ as a function of students' difficulty with calculations versus word problems? Learning Disabilities Research & Practice, 29 (3), 106-116. https://doi.org/10.1111/ldrp.12037

Radford, L. (2011). Grade 2 students' non-symbolic algebraic thinking. In J. Cai & E. Knuth (Eds.), Early algebraization (pp. 303-322). Berlin: Springer. https://doi.org/10.1007/978-3-642-17735-4_17

Rittle-Johnson, B., Matthews, P. G., Taylor, R. S. & McEldoon, K. L. (2011). Assessing knowledge of mathematical equivalence: a construct-modeling approach. Journal of Educational Psychology, 103 (1), 85-104. https://doi.org/10.1037/a0021334

Schifter, D., Russell, S. J. & Bastable, V. (2009). Early algebra to reach the range of learners. Teaching Children Mathematics, 16 (4), 230-237. https://doi.org/10.5951/TCM.16.4.0230

Schoenfeld, A. (1995). Report of working group 1. In C. Lacampagne, W. Blair & J. J. Kaput (Eds.), The algebra initiative colloquium (Vol. 2, pp. 11-18). Washington: U.S. Department of Education, OERI.

Skovsmose, O. (2003). Undersøgelseslandskaber. In O. Skovsmose, M. Blomhøj & H. Alrø (Eds.), Kan det virkelig passe? Om matematiklæring (pp. 143-157). København: L&R Uddannelse.

Smith, E. (2008). Representational thinking as a framework for introducing functions in the elementary curriculum. In J. Kaput, D. Carraher & M. Blanton (Eds.), Algebra in the early grades (pp. 95-132). Mahwah: Lawrence Erlbaum.

Smith, J. & Thompson, P. W. (2007). Quantitative reasoning and the development of algebraic reasoning. In J. Kaput, D. Carraher & M. Blanton (Eds.), Algebra in the early grades (pp. 95-132). Mahwah: Lawrence Erlbaum.

Soares, J., Blanton, M. L. & Kaput, J. J. (2006). Thinking algebraically across the elementary school curriculum. Teaching Children Mathematics, 12 (5), 228-235. https://doi.org/10.5951/TCM.12.5.0228

Stephens, A., Blanton, M., Knuth, E., Isler, I. & Gardiner, A. M. (2015). Just say yes to early algebra! Teaching Children Mathematics, 22 (2), 92-101. https://doi.org/10.5951/teacchilmath.22.2.0092

Stephens, A., Ellis, A. B., Blanton, M. & Brizuela, B. (2017). Algebraic thinking in the elementary and middle grades. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 386-420). Reston: NCTM.

Stephens, A., Fonger, N. L., Blanton, M. & Knuth, E. (2016). Elementary students' generalization and representation of functional relationships: a learning progressions approach (ED566523).

Stephens, A., Knuth, E. J., Blanton, M., Isler, I., Gardiner, A. M. & Marum, T. (2013). Equation structure and the meaning of the equal sign: the impact of task selection in eliciting elementary students' understandings. Journal of Mathematical Behavior, 32 (2), 173-182. https://doi.org/10.1016/j.jmathb.2013.02.001

Strauss, A. & Corbin, J. (1990). Basics of qualitative research : grounded theory procedures and techniques (2. printing ed.). Newbury Park: Sage.

Stump, S. L. (2011). Patterns to develop algebraic reasoning. Teaching Children Mathematics, 17 (7), 410-418. https://doi.org/10.5951/teacchilmath.17.7.0410

Suh, J. & Moyer, P. S. (2007). Developing students' representational fluency using virtual and physical algebra balances. Journal of Computers in Mathematics and Science Teaching, 26 (2), 155-173. https://www.learntechlib.org/primary/p/22799/

Switzer, M. J. (2016). What conceptions have us grade 4-6 students' generalized for formal and informal common representations of unknown addends? International Journal for Mathematics Teaching and Learning, 17 (1), 45. https://doi.org/10.4256/ijmtl.v17i1.10

Tanisli, D. (2011). Functional thinking ways in relation to linear function tables of elementary school students. Journal of Mathematical Behavior, 30 (3), 206-223. https://doi.org/10.1016/j.jmathb.2011.08.001

Townsend, B. E., Lannin, J. K. & Barker, D. D. (2009). Promoting efficient strategy use. Mathematics Teaching in the Middle School, 14 (9), 542-547. https://doi.org/10.5951/MTMS.14.9.0542

UVM (2001). Klare mål, matematik. København: Undervisningsministeriet.

UVM (2003). Fælles mål, matematik. København: Undervisningsministeriet.

UVM (2009). Fælles mål, matematik. København: Undervisningsministeriet.

UVM (2014). Fælles mål for faget matematik. København: Undervisningsministeriet.

Venenciano, L. & Heck, R. (2016). Proposing and testing a model to explain traits of algebra preparedness. Educational Studies in Mathematics, 92 (1), 21-35. https://doi.org/10.1007/s10649-015-9672-5

Warren, E. & Cooper, T. J. (2009). Developing mathematics understanding and abstraction: the case of equivalence in the elementary years. Mathematics Education Research Journal, 21 (2), 76-95. https://doi.org/10.1007/BF03217546

Warren, E. A., Cooper, T. J. & Lamb, J. T. (2006). Investigating functional thinking in the elementary classroom: foundations of early algebraic reasoning. Journal of Mathematical Behavior, 25 (3), 208-223. https://doi.org/10.1016/j.jmathb.2006.09.006

Wilkie, K. J. & Clarke, D. M. (2016). Developing students' functional thinking in algebra through different visualisations of a growing pattern's structure. Mathematics Education Research Journal, 28 (2), 223-243. https://doi.org/10.1007/s13394-015-0146-y

Xin, Y. P. (2008). The effect of schema-based instruction in solving mathematics word problems: an emphasis on prealgebraic conceptualization of multiplicative relations. Journal for Research in Mathematics Education, 39 (5), 526-551. https://doi.org/10.5951/jresematheduc.39.5.0526

Xin, Y. P., Wiles, B. & Lin, Y.-Y. (2008). Teaching conceptual model-based word problem story grammar to enhance mathematics problem solving. Journal of Special Education, 42 (3), 163-178. https://doi.org/10.1177/0022466907312895

Zeljic, M. (2015). Modelling the relationships between quantities: meaning in literal expressions. EURASIA Journal of Mathematics, Science & Technology Education, 11 (2), 431-442. https://doi.org/10.12973/eurasia.2015.1362a

Downloads

Published

2019-11-01

How to Cite

Kaas, T. (2019). Tilgange til tidlig algebra. NOMAD Nordic Studies in Mathematics Education, 24(3-4), 15–41. https://doi.org/10.7146/nomad.v24i3-4.149022

Issue

Section

Articles