Editorial
DOI:
https://doi.org/10.7146/nomad.v24i3-4.149021Abstract
Ledare / Editorial
References
Brezovszky, B., McMullen, J., Veermans, K., Hannula-Sormunen, M. M., Rodríguez-Aflecht, G. et al. (2019). Effects of a mathematics game- based learning environment on primary school students' adaptive number knowledge. Computers and Education, 128, 63-74. https://doi.org/10.1016/j.compedu.2018.09.011
Bråting, K., Madej, L. & Hemmi, K. (2019). Development of algebraic thinking: opportunities offered in the Swedish curriculum and elementary mathematics textbooks. Nordic Studies in Mathematics Education, 24 (1), 27-49.
Cai, J. & Knuth, E. (Eds.). (2011). Early algebraization. A global dialogue from multiple perspectives. Berlin: Springer. https://doi.org/10.1007/978-3-642-17735-4
Carlsen, L. M. (2019). What algebraic knowledge may not be learned with CAS - a praxeological analysis of Faroese exam exercises. Educação Matemática Pesquisa, 21 (4), 85-99. https://doi.org/10.23925/1983-3156.2019v21i4p085-099
Dolonen, J. A. & Kluge, A. (2014). Læremidler og arbeidsformer for algebra i skolen - en casestudie i prosjektet ARK&APP, matematikk, 8. klasse (Rapport nr. 4, ARK&APP). Retrieved from https://www.uv.uio.no/iped/forskning/prosjekter/ark-app/publikasjoner/downloads/rapport-4-case-matematikk-2014-04-11.pdf
Dolonen, J. A., Naalsund, M. & Kluge, A. (2015). Læremidler og arbeidsformer i matematikk 1T vgs - en casestudie i prosjektet ARK&APP, matematikk 1T, studieforberedende utdanningsprogram, videregående skole (Rapport nr. 7, ARK&APP). Retrieved from http://www.uv.uio.no/iped/forskning/prosjekter/ark-app/publikasjoner/downloads/Rapport_7_matematikk.pdf
Eriksson, H. (2015). Rationella tal som tal. Algebraiska symboler och generella modeller som medierande redskap (Licentiate thesis). Department of mathematics and science education, Stockholm University.
Espeland, H. (2017). Algebra at the start of upper secondary school: a case study of a Norwegian classroom with emphasis on the relationship between the mathematics offered and the students' responses (Doctoral dissertation). Kristiansand: University of Agder.
Francisco, J. M. & Hähkiöniemi, M. (2012). Students' ways of reasoning about nonlinear functions in guess-my-rule games. International Journal of Science and Mathematics Education, 10 (5), 1001-1021. https://doi.org/10.1007/s10763-011-9310-3
Fred, J. (2019). Att etablera och upprätthålla ett algebraiskt arbete i årskurs 2 och 3 (Licentiate thesis). Department of mathematics and science education, Stockholm university.
Fyhn, A. B., Jannok Nutti, Y., Dunfjeld, M. H., Eira, E. J. S., Steinfjell, A. S. et al. (2017). Can Sámi braiding constitute a basis for teaching discrete mathematics? Teachers and researchers' investigations. Journal of Mathematics and Culture, 11 (4), 1-38.
Fyhn, A. B., Jannok Nutti, Y., Dunfjeld, M. H., Eira, E. J. S., Børresen, T. et al. (2015). Ruvden as a basis for the teaching of mathematics: a Sámi mathematics teacher's experiences. In E. S. Huaman & B. Sriraman (Eds.), Indigenous innovation. Universalities and peculiarities (pp. 169-186). Rotterdam: Sense Publishers. https://doi.org/10.1007/978-94-6300-226-4_10
Hemmi, K., Bråting, K., Liljekvist, Y., Prytz, J., Madej, L. et al. (2018). Characterizing Swedish school algebra -initial findings from analyses of 299 steering documents, textbooks and teachers' discourses. In E. Norén, H. Palmér & A. Cooke (Eds.), Nordic research in mathematics education, papers of NORMA 17 (pp. 299-308). Gothenburg: SMDF.
Häggström, J. (2008). Teaching systems of linear equations in Sweden and China: What is made possible to learn? (PhD thesis). Gothenburg: Acta Universitatis Gothoburgensis.
Hästö, P., Palkki, R., Tuomela, D. & Star, J. (2019). Relationship between mathematical flexibility and success in national examinations. European Journal of Science and Mathematics Education, 7 (1), 1-13. https://doi.org/10.30935/scimath/9530
Joutsenlahti, J., Perkkilä, P. & Tossavainen, T. (2016). Näytteitä murtoluvun käsitteestä eri aikakausien oppikirjoissa [On the concept of fraction in a sample of the Finnish mathematics textbooks from different era]. FMSERA Journal, 1 (1), 99-109. Retrieved from https://journal.fi/fmsera/article/view/60904
Kaput, J., Carraher, D. & Blanton, M., (Eds.). (2008). Algebra in the early grades. New York: Routledge.
Kieran, C., Pang J. S., Schifter, D. & Ng, S. F. (2016). Early algebra: research into its nature, its learning, its teaching. ICME 13 topical surveys. Hamburg: Springer Open. https://doi.org/10.1007/978-3-319-32258-2
Kilhamn, C. & Bråting, K. (in press). Algebraic thinking in the shadow of programming. In U. T. Jankvist, M. van den Heuvel-Panhuizen & M. Veldhuis (Eds.), Proceedings of CERME11. Utrecht: Freudenthal Group & Freudenthal Institute, Utrecht University and ERME.
Kilhamn, C. & Säljö R. (2019). Encountering algebra. A comparative study of classrooms in Finland Norway, Sweden, and the USA. Cham: Springer. https://doi.org/10.1007/978-3-030-17577-1
Kongelf, T. R. (2019). Matematisk innhold og matematiske metoder i lærebøker brukt på ungdomstrinnet i Norge: gullgruve eller fallgruve for utvikling av matematisk kompetanse i problemløsning og algebra? (PhD thesis). Kristiansand: University of Agder.
Lundberg, A. & Kilhamn, C. (2018). Transposition of knowledge: encountering proportionality in an algebra task. International Journal of Science and Mathematics, 16 (3), 559-579. https://doi.org/10.1007/s10763-016-9781-3
Magnusson, J. (2014). Proportionella samband - innehållets behandling och elevernas lärande [Proportional reasoning - the relation between instruction and students learning] (Licentiate thesis). Faculty of Education, University of Gothenburg.
Maunula, T. (2018). Students' and teachers' jointly constituted learning opportunities - the case of linear equations (PhD thesis). Gothenburg: Acta Universitatis Gothoburgensis.
McMullen, J., Brezovszky, B., Hannula-Sormunen, M. M., Veermans, K., Rodríguez-Aflecht, G. et al., (2017). Adaptive number knowledge and its relation to arithmetic and pre-algebra knowledge. Learning and Instruction, 49, 178-187. https://doi.org/10.1016/j.learninstruc.2017.02.001
McMullen, J., Hannula-Sormunen, M. M. & Lehtinen, E. (2017). Spontaneous focusing on quantitative relations as a predictor of rational number and algebra knowledge. Contemporary Educational Psychology, 51, 356-365. https://doi.org/10.1016/j.cedpsych.2017.09.007
McMullen, J. & Van Hoof, J. (2020). The role of rational number density knowledge in mathematical development. Learning and Instruction, 65, art. no. 101228. https://doi.org/10.1016/j.learninstruc.2019.101228
Myklebust, T. (2015). Kan rekka 1 + 2k + ... + nk motivere elevane til å arbeide med algebra? In F. O. Haara & I. K. Røe Ødegård (Eds.), Grunnskolelærerutdanning gjennom pedagogisk entreprenørskap (pp. 135-161). Oslo: Cappelen Damm Akademisk.
Naalsund, M., Dolonen, J. A. & Kluge, A. (2015). Læremidler og arbeidsformer i algebra på mellomtrinnet - en casestudie i prosjektet ARK&APP, matematikk, 5. klasse (Rapport nr. 12, ARK&APP). Retrieved from http://www.uv.uio.no/iped/forskning/prosjekter/ark-app/publikasjoner/downloads/rapport-11-mat-5-kl.pdf
Nyman, R. (2017). Interest and engagement: perspectives on mathematics in the classroom (PhD thesis). Gothenburg: Acta Universitatis Gothoburgensis.
Pakarinen, E. & Kikas, E. (2019). Child-centered and teacher-directed practices in relation to calculation and word problem solving skills. Learning and Individual Differences, 70, 76?85. https://doi.org/10.1016/j.lindif.2019.01.008
Rystedt, E. (2015). Encountering algebraic letters, expressions and equations: a study of small group discussions in a grade 6 classroom (Licentiate thesis). Faculty of Education, University of Gothenburg.
Rystedt, E., Helenius, O. & Kilhamn, C. (2016). Moving in and out of contexts in collaborative reasoning about equations. The Journal of Mathematical Behavior, 44, 50-64. doi: 10.1016/j.jmathb.2016.10.002 https://doi.org/10.1016/j.jmathb.2016.10.002
Silfverberg, H. & Tuominen, A. (2015). Murtoluvun ja lukusuorna pisteen välinen vastaavuus - tyyppillisimpiä virheitä luokanopettajaopiskelijoiden suorituksissa [The correspondence between fractions and points of the number-line - the most typical errors in pre-service elementary school teachers answers]. In H. Sifverberg & P. Hästö (Eds.), Proceedings of the annual FMSERA symposium 2015 (pp.133-142). Turku: Finnish Mathematics and Science Education Association.
Strømskag, H. (2017a). A methodology for instructional design in mathematics - with the generic and epistemic student at the centre. ZDM, 49, 909-921. https://doi.org/10.1007/s11858-017-0882-4
Strømskag, H. (2017b). Et miljø for algebraisk generalisering og dets innvirkning på studenters matematiske aktivitet. Nordic Studies in Mathematics Education, 22 (2), 71-91.
Wathne, U., Reinhardtsen, J., Borgersen, H. E. & Cestari, M. L. (2019). Designed examples as mediating tools: introductory algebra in two Norwegian grade 8 classrooms. In C. Kilhamn & R. Säljö (Eds.), Encountering algebra: a comparative study of classrooms in Finland, Norway, Sweden, and the USA (pp. 71-109). Cham: Springer. https://doi.org/10.1007/978-3-030-17577-1_5
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.