Preparing future teachers for interdisciplinarity – designing and implementing a course for pre-service upper secondary teachers

Authors

  • Uffe Thomas Jankvist
  • Jan Alexis Nielsen
  • Claus Michelsen

DOI:

https://doi.org/10.7146/nomad.v18i2.148507

Abstract

Educational researchers and policy-makers have for some time touted the need for interdisciplinary teaching. But while there are many educational, democratic, and economic arguments for bringing an increased attention to interdisciplinary teaching, there has been a striking lack of exposure of the question of how future teachers, who are largely educated in a mono-disciplinary fashion, can best become equipped to introduce genuinely interdisciplinary teaching activities to their future students. This article presents some preliminary reflections upon a graduate course at the University of Southern Denmark, which aims to prepare future science and mathematics teachers for interdisciplinary teaching, and which has been designed on the basis of influential theoretical expositions of the concept of interdisciplinarity.

References

Beckmann, A. (2008). A conceptual framework for cross-curricular teaching. The Montana Mathematics Enthusiast, 6 (Supplement 1), 1-58. https://doi.org/10.54870/1551-3440.1153

Berlin, D. F. & Lee, H. (2005). Integrating science and mathematics education: historical analysis. School Science and Mathematics, 105 (1), 15-24. https://doi.org/10.1111/j.1949-8594.2005.tb18032.x

Berlin, D. F. & White, A. L. (1998). Integrated science and mathematics education: evolution and implications of a theoretical model. In B. J. Fraser & K. Tobin (Eds.), International handbook of science education (pp 499-512). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/978-94-011-4940-2_29

Blum, W., Galbraith, P. L., Henn, H.-W. & Niss, M. (Eds.). (2007). Modelling and applications in mathematics education (The 14th ICMI Study. New ICMI Studies series 10). New York: Springer. https://doi.org/10.1007/978-0-387-29822-1

Christensen, J. J. & Bjerre, H. V. (2010). Menneskehedens vækst (et forløb for fysik, filosofi og matematik). Unpublished exam project report in Nat802, University of Southern Denmark.

Dahland, G. (1998). Matematikundervisning i 1990-talets gymnasieskola. Ett studium av hur didaktisk tradition har påverkats av informationsteknologins verktyg. Department of Pedagogics, University of Gothenburg

Dolin, J., Krogh, L. B. & Troelsen, R. (2003). En kompetencebeskrivelse af naturfagene. In H. Busch, S. Hors. & R. Troelsen (Eds.), Inspiration til fremtidens naturfaglige uddannelse - en antologi (pp. 60-142). København: Undervisningsministeriet.

Doorman, L. M. & Gravemeijer, K. P. E. (2009). Emergent modeling: discrete graphs to support the understanding of change and velocity. ZDM. The International Journal on Mathematics Education, 41 (1), 199-211. https://doi.org/10.1007/s11858-008-0130-z

Freudenthal, H. (1991). Revisiting mathematics education - China lectures. Dordrecht: Kluwer Academic Publishers.

Gilbert, J. K. & Boulter, C. J. (2000). Developing models in science education. Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/978-94-010-0876-1

Grube, E. & Rasmussen, C. (2010). Et tværfagligt modelleringsforløb - en eksamensopgave omhandlende tankerne bag et tværfagligt modelleringsforløb mellem fagene biologi, kemi og matematik. Unpublished exam project report in Nat802, University of Southern Denmark.

Halloun, I. A. (2006). Mediated modeling in science education. Science & Education, 16 (7-8), 653-697. https://doi.org/10.1007/s11191-006-9004-3

Halloun, I. A. & Hesteness, D. (1987). Modeling instruction in mechanics. American Journal of Physics, 55 (5), 555-462. https://doi.org/10.1119/1.15130

Hesteness, D. (2008). Notes for a modeling theory of science, cognition and instruction. In E. Berg, T. Ellermeije. & O. Slooten (Eds.), Modelling in physics and physics education (pp. 34-65). University of Amsterdam.

Imanilasaki, S. & Jørgensen, D. (2010). Fagsammenspil og modellering i matematik og historie. Unpublished exam project report in Nat802, University of Southern Denmark.

Iversen, S. (2006). Modeling interdisciplinary activities involving mathematics and philosophy. The Montana Mathematical Enthusiast, 3 (1), 85-98. https://doi.org/10.54870/1551-3440.1037

Jankvist, U. T. (2011a). Anchoring students' metaperspective discussions of history in mathematics. Journal for Research in Mathematics Education, 42 (4), 346-385. https://doi.org/10.5951/jresematheduc.42.4.0346

Jankvist, U. T. (2011b). The construct of anchoring - an idea for 'measuring' interdisciplinarity in teaching. Philosophy of Mathematics Education Journal, 26, 1-10.

Jankvist, U. T. & Kjeldsen, T. H. (2011). New avenues for history in mathematics education: mathematical competencies and anchoring. Science & Education, 20 (9), 831-862. https://doi.org/10.1007/s11191-010-9315-2

Jantsch, E. (1972). Inter- and transdisciplinary university: a systems approach to education and innovation. Higher Education, 1 (1), 7-37. https://doi.org/10.1007/BF01956879

Jensen, T. H. (2009). Modellering versus problemløsning - om kompetencebeskrivelser som kommunikationsværktøj. MONA, 2009 (2), 37-54.

Jensen, K. B. (2010). Tværfaglige samspil mellem matematik og historie i gymnasiets studieretningsprojekt (SRP). MONA, 2010 (1), 32-53.

Kaiser, G. & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM, 38 (3), 302-310. https://doi.org/10.1007/BF02652813

Klein, J. T. (2010). A taxonomy of interdisciplinarity. In R. Frodeman (Ed.), The Oxford handbook of interdisciplinarity (pp 15-30). Oxford University Press.

Lesh, R. & Doerr, H. M. (2003). Beyond constructivism: a models and modeling perspective on mathematics problem solving, learning and teaching. Hillsdale: Lawrence Erlbaum. https://doi.org/10.4324/9781410607713

Mason, J. (2001). Modelling modelling: Where is the centre of gravity of-for- when teaching modelling? In J. F. Matos, W. Blum, S. K. Housto. & S. P. Carreira (Eds.), Modelling and mathematics education (pp 39-61). Chichester: Horwood Publishing. https://doi.org/10.1533/9780857099655.1.39

Matthews, M. R. (2007). Models in science and in science education: an introduction. Science & Education, 16 (7-8), 647-652. https://doi.org/10.1007/s11191-007-9089-3

Matthews, M. R., Gauld, C. F. & Stinner, A. (Eds.). (2005). The pendulum. Dordrecht: Springer. https://doi.org/10.1007/1-4020-3526-8

Michelsen, C. (2005). Expanding the domain: variables and functions in an interdisciplinary context between mathematics and physics. In A. Beckmann, C. Michelsen & B. Sriraman (Eds.), Proceedings of the First International Symposium of Mathematics and its Connection to the Arts and Sciences (pp 201-214). Berlin: Verlag Franzbecker.

Michelsen, C. & Iversen, S. M. (2009). Samspillet mellem matematik og de andre fag i gymnasieskolen - matematikfaget og reformen af de ungdomsgymnasiale uddannelser. MONA, 2009 (2), 21-36.

Ministry of Children and Education (2010a). Bekendtgørelse om uddannelsen til studentereksamen (stx). Nr 692 af 23/06/2010.

Ministry of Children and Education. (2010b). Bekendtgørelse om uddannelse til studentereksamen (stx-bekendtgørelsen). Fysik A - stx. Bilag 23.

Nielsen, J. A. (2011). Co-opting science: a preliminary study of how students invoke science in value-laden discussions. International Journal of Science Education, 34 (2), 275-299. https://doi.org/10.1080/09500693.2011.572305

Nielsen, J. A. (in press). Delusions about evidence: on why scientific evidence should not be the main concern in socioscientific decision-making. Canadian Journal of Science, Mathematics and Technology Education.

Niss, M. & Højgaard, T. (Eds.). (2011). Competencies and mathematical learning - ideas and inspiration for the development of mathematics teaching and learning in Denmark (English Edition, October 2011) (IMFUFA tekst no. 485). Roskilde University. (originally published in Danish in 2002)

Osborne, J. (2002). Science without literacy: A ship without a sail? Cambridge Journal of Education, 32 (2), 203-218. https://doi.org/10.1080/03057640220147559

Svendsen, O. P., Pedersen, S. B. & Overgaard, A. K. (2010). Trefaglig modellering og tværfaglig undervisning i fysik, matematik og idræt. Unpublished exam project report in Nat802, University of Southern Denmark.

Thomsen, C. M., Hansen, E. R., Christensen, J. J. & Svendsen, O. P. (2010). Opgave 1 Nat802. Unpublished exam project report in Nat802, University of Southern Denmark.

Treffers, A. (1987). Three dimensions: a model of goal and theory description in mathematics instruction - the Wiskobas project. Dordrecht: Reidel. https://doi.org/10.1007/978-94-009-3707-9

Ulrichsen, L. (2001). Tværfaglighed. In F. Held & F. Olsen (Eds.), Introduktion til pædagogik (pp. 267-277). København: Frydenlund.

Wendelboe, C. & Thomsen, C. M. (2010). Opgave 2 til Nat802. Unpublished exam project report in Nat802, University of Southern Denmark.

Downloads

Published

2013-06-19

How to Cite

Jankvist, U. T., Nielsen, J. A., & Michelsen, C. (2013). Preparing future teachers for interdisciplinarity – designing and implementing a course for pre-service upper secondary teachers. NOMAD Nordic Studies in Mathematics Education, 18(2), 71–92. https://doi.org/10.7146/nomad.v18i2.148507

Issue

Section

Articles