How mathematics students perceive the transition from secondary to tertiary level with particular reference to proof

Authors

  • Fulvia Furinghetti
  • Chiara Maggiani
  • Francesca Morselli

DOI:

https://doi.org/10.7146/nomad.v17i3-4.148476

Abstract

This paper reports on a research project concerning the difficulties met by undergraduate students in mathematics during the first year of university. Our aim is to provide elements for studying the transition from secondary to tertiary level as perceived by the students who live it. The combination of different analytical tools (questionnaires, interviews, problem solving and proving activities) allows shedding light on aspects which are not purely cognitive, but also pertain to the affective domain.

References

Bosch, M., Fonseca, C. & Gascón, J. (2004). Incompletud de las organizaciones matematicas locales en las instituciones escolares. Recherches en Didactique des Mathématiques, 24 (2-3), 205-250.

Castela, C. (1995). Apprendre avec et contre ses connaissances antérieures: un exemple concret, celui de la tangente. Recherches en Didactique des Mathématiques, 15, 7-47.

De Guzmán, M., Hodgson, R. B., Robert, A. & Villani, V. (1998). Difficulties in the passage from secondary to tertiary education. In G. Fischer & U. Rehmann (Eds.), Proceedings of the International Congress of Mathematicians. Documenta Mathematica, Journal der Deutschen Mathematiker-Vereinigung, Extra volume ICM 1998, 3 (pp. 747-762). https://doi.org/10.4171/dms/1-3/72

Di Martino, P. & Maracci, M. (2009). The secondary-tertiary transition: beyond the purely cognitive. In M. Tzekaki, M. Kaldrimidou & H. Sakonidis (Eds.), Proceedings of PME 33 (Vol. 2, pp. 401-408). Thessaloniki: PME.

Di Martino, P. & Zan, R. (2010). Me and maths. Towards a definition of attitude grounded on students' narratives. Journal of Mathematics Teacher Education, 13, 27-48. https://doi.org/10.1007/s10857-009-9134-z

Evans, J., Hannula, M. S., Zan, R. & Brown, L. C. (Guest Eds.) (2006). Affect in mathematics education: exploring theoretical frameworks. A PME special issue. Educational Studies in Mathematics, 63 (2). https://doi.org/10.1007/s10649-006-9028-2

Ferrari, P. L. (2004). Mathematical language and advanced mathematics learning. In M. Johnsen Høines & A. B. Fuglestad (Eds.), Proceedings of PME 28 (Vol. 2, pp. 383-390). Bergen University College.

Furinghetti, F. & Morselli, F. (2007). For whom the frog jumps: the case of a good problem solver. For the Learning of Mathematics, 27 (2), 22-27.

Furinghetti, F. & Morselli, F. (2009). Every unsuccessful solver is unsuccessful in his/her own way: affective and cognitive factors in proving. Educational Studies in Mathematics, 70, 71-90. https://doi.org/10.1007/s10649-008-9134-4

Griffiths, H. B. & McLone, R. R. (1984). A critical analysis of university examinations in mathematics. Part I: a problem of design. Educational Studies in Mathematics, 15, 291-311. https://doi.org/10.1007/BF00312079

Gueudet, G. (2008). Investigating secondary-tertiary transition. Educational Studies in Mathematics, 67, 237-254. https://doi.org/10.1007/s10649-007-9100-6

Hemmi, K. (2008). Students' encounter with proof - the condition of transparency. ZDM - The International Journal on Mathematics Education, 40, 413-426. https://doi.org/10.1007/s11858-008-0089-9

Hemmi, K. (2010). Three styles characterising mathematicians' pedagogical perspectives on proof. Educational Studies in Mathematics, 75, 271-291. https://doi.org/10.1007/s10649-010-9256-3

Heyd-Metzuyanim, E. & Sfard, A. (2012). Identity struggles in the mathematics classroom - learning mathematics as an interplay between mathematizing and identifying. International Journal of Educational Research, 51-52, 128-145. https://doi.org/10.1016/j.ijer.2011.12.015

Hoyles, C., Newman, K. & Noss, R. (2001). Changing patterns of transition from school to university mathematics. International Journal of Mathematical Education in Science and Technology, 32, 829-845. https://doi.org/10.1080/00207390110067635

Lampert, M. (1990). When the problem is not the question and the solution is not the answer: mathematical knowing and teaching. American Educational Research Journal, 27 (1), 29-63. https://doi.org/10.3102/00028312027001029

Lieblich, A., Tuval-Mashiach, R. & Zilber, T. (1998). Narrative research. Reading, analysis, and interpretation. Newbury Park: Sage Publications. https://doi.org/10.4135/9781412985253

McLeod, D. B. (1992). Research on affect in mathematics education: a reconceptualization. In D. A. Grouws (Ed.), Handbook of research on mathematics learning and teaching (pp. 575-596). New York: Macmillan.

Mills, M. (2011). Mathematicians' pedagogical thoughts and practices in proof presentation. In S. Brown, S. Larsen, K. Marrongelle & M. Oehrtman (Eds.), Proceedings of the 14th Conference for Research in Undergraduate Mathematics Education (Vol. 2, pp. 283-297). Portland: SIGMAA/RUME.

Moore, R. C. (1994). Making the transition to formal proof. Educational Studies in Mathematics, 27, 249-266. https://doi.org/10.1007/BF01273731

Patton, M. Q. (1990). Qualitative evaluation and research methods (2nd edition). Newbury Park: Sage Publications.

Praslon, F. (1999). Discontinuities regarding the secondary/university transition: the notion of derivative as a specific case. In O. Zaslavski (Ed.), Proceedings of PME 23 (Vol. 4, pp. 73-80). Haifa: The Technion Printing Center.

Robert, A. (1998). Outils d'analyse des contenus mathématiques à enseigner au lycée et à l'université. Recherches en Didactique des Mathématiques, 18 (2), 139-190.

Selden, A. (2012). Transitions and proof and proving at tertiary level. In G. Hanna & de M. Villiers (Eds.), Proof and proving in mathematics education (pp. 391-420). New York: Springer. https://doi.org/10.1007/978-94-007-2129-6_17

Stadler (2011). The same but different - novice university students solve a textbook exercise. In M. Pytlak, T. Rowland & E. Swoboda (Eds.), Proceedings of CERME 7 (pp. 2083-2092). Rzeszów: University of Rzeszów.

Strauss, A. & Corbin, J. (1998). Basics of qualitative research: techniques and procedures for developing grounded theory. London: Sage Publications.

Tall, D. (2008). The transition to formal thinking in mathematics. Mathematics Education Research Journal, 20 (2), 5-24. https://doi.org/10.1007/BF03217474

Thomas, M., Freitas Druck, I. de, J., Huillet, D., Ju, M.-K., Nardi, E. et al. (2012). Survey team 4: Key mathematical concepts in the transition from secondary to university. In ICME-12 Pre-Proceedings (pp. 90-136). Retrieved April 17, 2013 from http://www.math.auckland.ac.nz/~thomas/ST4.pdf

Ward-Penny, R., Johnston-Wilder, S. & Lee, C. (2011). Exit interviews: undergraduates who leave mathematics behind. For the Learning of Mathematics, 31 (2), 21-26.

Weber, K. (2012). Mathematicians' perspectives on their pedagogical practice with respect to proof. International Journal of Mathematics Education in Science and Technology, 43, 463-475. https://doi.org/10.1080/0020739X.2011.622803

Weiner, B. (1980). The role of affect in rational (attributional) approaches to human motivation. Educational Researcher, 9 (7), 4-11. https://doi.org/10.2307/1174664

Weiner, B. (1985). An attributional theory of achievement motivation and emotion. Psychological Review, 92, 548-573. https://doi.org/10.1037/0033-295X.92.4.548

Downloads

Published

2012-11-19

How to Cite

Furinghetti, F., Maggiani, C., & Morselli, F. (2012). How mathematics students perceive the transition from secondary to tertiary level with particular reference to proof. NOMAD Nordic Studies in Mathematics Education, 17(3-4), 91–106. https://doi.org/10.7146/nomad.v17i3-4.148476

Issue

Section

Articles