Interplay of cognition and affect in undergraduate math students’ careers: insights from recursive partitioning

Authors

  • Chiara Andrà
  • Guido Magnano

DOI:

https://doi.org/10.7146/nomad.v17i3-4.148475

Abstract

Data collected in entrance tests for undergraduate curricula in mathematics at the University of Turin are analysed using the recursive partition method, to obtain classification trees for different ”response variables” describing academic achievement or drop-out. The input factors include both math abilities and several affective and motivational factors, the latter having being assessed using internationally validated questionnaires. We argue that classification trees can provide unexpected insight into the interplay of such factors for academic success or failure, specifically for math students.

References

Bandura, A. (1986). Social foundations of thought theory. Prentice-Hall.

Bosch, M., Fonseca, C. & Gascón, J. (2004). Incompletud de las organizaciones matematicas locales en las instituciones escolares. Recherches en Didactique des Mathématiques, 24 (2-3), 205-250.

Daskalogianni, K. & Simpson, A. (2001). Beliefs overhang: the transition from school to university. In J. Winter (Ed.), Proceedings of the British Society for Research into the Learning of Mathematics 21 (2) July 2001 (pp. 97-108). Available May 13, 2013 from http://bsrlm.org.uk/IPs/ip21-2/

Furinghetti, F. & Morselli, F. (2009). Every unsuccessful solver is unsuccessful in his/her own way: affective and cognitive factors in proving. Educational Studies in Mathematics, 70, 71-90. https://doi.org/10.1007/s10649-008-9134-4

Gueudet, G. (2008). Investigating secondary-tertiary transition. Educational Studies in Mathematics, 67, 237-254. https://doi.org/10.1007/s10649-007-9100-6

Hannula, M. S. (2011). The structure and dynamics of affect in mathematical thinking and learning. In M. Pytlak, E. Swoboda & T. Rowland (Eds.), Proceedings of the CERME7 (pp. 34-60). University of Reszow: CERME.

Hastie, T., Tibshirani, R. & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction (2nd ed.). New York: Springer. https://doi.org/10.1007/978-0-387-84858-7

Hoyles, C., Newman, K. & Noss, R. (2001). Changing patterns of transition from school to university mathematics. International Journal of Mathematical Education in Science and Technology, 32, 829-845. https://doi.org/10.1080/00207390110067635

McLeod, D. B. (1992). Research on affect in mathematics education: a reconceptualization. In D. A. Grouws (Ed.), Handbook of research on mathematics learning and teaching (pp. 575-596). New York: Macmillan.

Moore, R. C. (1994). Making the transition to formal proof. Educational Studies in Mathematics, 27, 249-266. https://doi.org/10.1007/BF01273731

Rylands, L. & Coady, C. (2009). Performance of students with weak mathematics in first-year mathematics and science. International Journal of Mathematical Education in Science and Technology, 40 (6), 741-753. https://doi.org/10.1080/00207390902914130

Robert, A. (1998). Outils d'analyse des contenus mathématiques à enseigner au lycée et à l'université. Recherches en Didactique des Mathématiques, 18 (2), 139-190.

Romero, C. & Ventura, S. (2010). Educational data mining: a review of the state-of-the-art. IEEE Transaction on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 40 (6), 601-618. https://doi.org/10.1109/TSMCC.2010.2053532

Roth, W.-M. & Radford, L. (2011). A cultural historical perspective on teaching and learning. Rotterdam: Sense Publishers. https://doi.org/10.1007/978-94-6091-564-2

Soresi, S. & Nota, L. (2007). Le capacità di studio. Giornate di studio AIP Sezione di Psicologia dello Sviluppo e dell'Educazione, Verona, settembre 2007. Unpublished presentation.

Savickas, M., Nota, L., Rossier, J., Dauwalder, J. P., Duarte, M. E., et al. (2009). Life designing: a paradigm for career construction in the 21st century. Journal of Vocational Behavior, 75 (3), 239-250 https://doi.org/10.1016/j.jvb.2009.04.004

Superby, J. F., Vandamme, J.-P. & Meskens, N. (2006). Determination of factors influencing the achievement of the first-year university students using data mining methods. In Proceedings of the Workshop on Educational Data Mining at the 8th International Conference on Intelligent Tutoring Systems (pp. 37-44). Available May 14, 2013 from http://www.educationaldatamining.org/IEDMS/ EDMITS2006

Tall, D. (Ed.) (1991). Advanced mathematical thinking. Dordrecht: Kluwer. https://doi.org/10.1007/0-306-47203-1

Therneau, T. M. & Atkinson, E. J. (2012). An introduction to recursive partitioning using the RPART routines. Available May 14, 2013 from http://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf

Usher, E. L. & Pajares, F. (2009). Sources of self-efficacy in mathematics: a validation study. Contemporary Educational Psychology, 34, 89-101. https://doi.org/10.1016/j.cedpsych.2008.09.002

Vialardi C., Bravo J., Shafti L. & Ortigosa A. (2009). Recommendation in higher education using data mining techniques. In Proceedings of the Second International Conference on Educational Data Mining (pp. 190- 199). Available May 14, 2013 from http://www.educationaldatamining.org/ EDM2009/uploads/proceedings/vialardi.pdf

Zimmerman, B.J. & Kitsantas, A. (2005). Students' perceived responsibility and completion of homework: the role of self-regulatory beliefs and processes. Contemporary Educational Psychology, 30, 397-417. https://doi.org/10.1016/j.cedpsych.2005.05.003

Downloads

Published

2012-11-19

How to Cite

Andrà, C., & Magnano, G. (2012). Interplay of cognition and affect in undergraduate math students’ careers: insights from recursive partitioning. NOMAD Nordic Studies in Mathematics Education, 17(3-4), 75–89. https://doi.org/10.7146/nomad.v17i3-4.148475

Issue

Section

Articles