Head teachers’ conception of gifted students in mathematics in Swedish upper secondary school

Authors

  • Linda Mattsson

DOI:

https://doi.org/10.7146/nomad.v15i3.148278

Abstract

The article presents a study of how Swedish upper secondary head teachers, working within mathematically intensive study programs, conceptualize giftedness in mathematics. The study is based on a survey of 34 randomly selected head teachers, in a population of about 400, who have answered questions about how they character- ize and detect gifted mathematics students. The results show that teachers characterize such students as creative, strong in logical ability and keen in their motivation for mathematics. The teachers detect such students by the students’ own initiative for engaging in mathematics, their inclination to orally reason about mathematics and their successfulness on tests. The findings, which are in accordance with results from internationally published studies, are of importance to the current discussion on special provision for gifted students in Sweden.

References

Berg, B. L. (2007). Qualitative research methods for the social sciences (6th ed.). Boston: Allyn & Bacon.

Chyriwsky, M. & Kennard, R. (1997). Attitudes to able children: a survey of mathematics teachers in English secondary schools. High Ability Studies, 8 (1), 47-59. https://doi.org/10.1080/1359813970080105

Edfeldt, Å. W. & Wistedt, I. (2009). High ability education in Sweden: the Swedish model. In T. Balchin, B. Hymer & D.J. Matthews (Eds.), The Routledge international companion to gifted education (pp. 76-83). London: Routledge.

Engström, A. (2003). Specialpedagogiska frågeställningar i matematik: en introduktion [Issues of special education in mathematics: an introduction]. Department of Education, Örebro University.

Gagné, F. (1995). From giftedness to talent: a developmental model and its impact of the field. Roeper Review, 18 (2), 103-111. https://doi.org/10.1080/02783199509553709

Gardner, H. (1983). Frames of mind. New York: Basic Books.

Glaser, B. G. & Strauss, A. L. (1967). The discovery of grounded theory: strategies for qualitative research. New Brunswick: Aldine Transaction.

Greenes, C. (1981). Identifying the gifted students in mathematics. Arithmetic Teacher, 28 (6), 14-17. https://doi.org/10.5951/AT.28.6.0014

Heid, M. K. (1983). Characteristics and special needs of the gifted student in mathematics. Mathematics Teacher, 76, 221-226. https://doi.org/10.5951/MT.76.4.0221

Kiesswetter, K. (1985). Die föderung von matematisch besonders begabten und interessierten Schülern - ein bislang vernachlässigtes sonderpädagogisches problem [The advancement of mathematically talented and interested students - a neglected and special pedagogical problem]. Der matematishe und naturwissenschaftliche Unterricht, 38, 300-306.

Krippendorff, K. (2004). Content analysis. An introduction to its methodology (2nd ed.). Thousand Oaks: Sage.

Krutetskii, V.A. (1976). The psychology of mathematical abilities in schoolchildren. The University of Chicago Press.

Leikin, R., Koichu, B. & Berman, A. (2009). Mathematical giftedness as a quality of problem-solving acts. In R. Leikin, A. Berman & B. Koichu (Eds.) Creativity in mathematics and the education of gifted students (pp. 115-128). Rotterdam: Sense Publishers. https://doi.org/10.1163/9789087909352_009

Magne, O. (2001). Literature on special educational needs in mathematics: a bibliography with some comments (Educational and psychological interactions 124). Malmö college of teacher education.

Magne, O. (2006). Historical aspects on special education in mathematics. Nordic Studies in Mathematics Education, 11 (4), 7-35.

Majoram, D.T.E. (1992). Teaching able mathematicians in school. Gifted Education International, 8 (1), 40-44. https://doi.org/10.1177/026142949200800109

Mayer, R.E. (2005). The scientific study of giftedness. In R. J. Sternberg & J. E. Davidson (Eds.), Conceptions of giftedness (2nd ed., pp.437-447). New York: Cambridge University Press. https://doi.org/10.1017/CBO9780511610455.025

Ministry of Education and Research. (2008). Inrättande av försöksverksamhet med riksrekryterande gymnasial spetsutbildning [Establishing a pilot project of upper secondary school level cutting-edge program with national recruitment] (U2008/3879/G). Stockholm: Government Offices of Sweden.

Mönks, F. J. (1992). Development of gifted children: the issue of identification and programming. In F. J. Mönks & W. A. M. Peters (Eds.), Talent for the future. Proceedings of the ninth world conference on gifted and talented children (pp.191-202). Assen: Van Gorcum.

Neuendorf, K. A. (2002). The content analysis guidebook. Thousand Oaks: Sage.

Palm, T., Boesen, J. & Lithner, J. (2005). The requirements of mathematical reasoning in upper secondary level assessment (Research reports in mathematics education 5). Department of Mathematics, Umeå University.

Pehkonnen, E. & Hannula, M. S. (2004). Mathematical belief research in Finland. Nordic Studies in Mathematics Education, 9 (1), 23-37.

Persson, R.S., Joswig, H. & Balogh, L. (2000). Gifted education in Europe: programs, practice, and current research. In K. A. Heller, F. J. Mönks, R. J. Sternberg & R. F. Subotnik (Eds.), International handbook of giftedness and talent (2nd ed., pp. 703-734). Oxford: Elsevier Science. https://doi.org/10.1016/B978-008043796-5/50051-6

Persson, R. S. (1998). High ability and teacher roles in an egalitarian context (Research Report I. The Jonkoping urban giftedness identification project). Jönköping University.

Peters, W. A. M., Grager-Loidl, H. & Supplee, P. (2000). Underachievement in gifted children and adolescents: theory and practice. In K. A. Heller, F. J. Mönks, R. J. Sternberg & R. F. Subotnik (Eds.), International handbook of giftedness and talent (2nd ed., pp.609-620). Oxford: Elsevier Science. https://doi.org/10.1016/B978-008043796-5/50043-7

Renzulli, J. (2004). Introduction to identification of students for gifted and talented programs. In J. S. Renzulli (Ed.), Identification of students for gifted and talented programs (pp. xxiii-xxxiv). Thousand Oaks: Corwin Press.

Renzulli, J. (2005). The three-ring conception of giftedness. A developmental model for promoting creative productivity. In R. J. Sternberg & J. E. Davidson (Eds.), Conceptions of giftedness (2nd ed., pp.246-279). New York: Cambridge university press. https://doi.org/10.1017/CBO9780511610455.015

Sheffield, L. (2009). Developing mathematical creativity - questions may be the answer. In R. Leikin, A. Berman & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 87-100). Rotterdam: Sense Publishers. https://doi.org/10.1163/9789087909352_007

Speer, N. M. (2005). Issues of methods and theory in the study of mathematics teachers' professed and attributed beliefs. Educational Studies in Mathematics, 58, 361-391. https://doi.org/10.1007/s10649-005-2745-0

Sriraman, B. (2003). Mathematical giftedness, problem solving, and the ability to formulate generalizations: the problem-solving experience of four gifted students. Journal of Secondary Gifted Education, 14 (3), 151-165. https://doi.org/10.4219/jsge-2003-425

Sriraman, B. (2004). The characteristics of mathematical creativity. The Mathematics Educator, 14 (1), 19-34.

Sriraman, B. (2005). Are giftedness and creativity synonyms in mathematics? Journal of Secondary Gifted Education, 17 (1), 20-36. https://doi.org/10.4219/jsge-2005-389

Sternberg, R. J. (2005). The WICS model of giftedness. In R. J. Sternberg & J. E. Davidson (Eds.), Conceptions of giftedness (2nd ed., pp.327-342). New York: Cambridge university press. https://doi.org/10.1017/CBO9780511610455.019

Swedish Government Official Report. (2004). Att lyfta matematiken - intresse, lärande, kompetens [Enhancing the status of mathematics - interest, learning, competence] (2004:97). Stockholm: Fritzes.

Swedish National Agency for Higher Education. (2005). Nybörjarstudenter och matematik - matematikundervisningen under första året på tekniska och naturvetenskapliga utbildningar [Freshman mathematics - teaching mathematics in first-year programmes in technology and the natural sciences] (2005:36R). Stockholm: Swedish National Agency for Higher Education.

Wertheimer, R. (1999). Definition and identification of mathematical promise. In L. J. Sheffield (Ed.), Developing mathematically promising students (pp. 9-26). Reston: NCTM.

Wiecerkowski, W., Cropley, A. J. & Prado, T. M. (2000). Nurturing talents/gifts in mathematics. In K. A. Heller, F. J. Mönks, R. J. Sternberg & R. F. Subotnik (Eds.), International handbook of giftedness and talent (2nd ed., pp 413-425). Oxford: Elsevier Science. https://doi.org/10.1016/B978-008043796-5/50029-2

Winner, E. (1996). Gifted children: myths and realities. New York: Basic Books.

Wolfle, J.A. (1986). Enriching the mathematics program for middle school gifted students. Roeper Review, 9 (2), 81-85. https://doi.org/10.1080/02783198609553015

Downloads

Published

2010-09-19

How to Cite

Mattsson, L. (2010). Head teachers’ conception of gifted students in mathematics in Swedish upper secondary school. NOMAD Nordic Studies in Mathematics Education, 15(3), 3–22. https://doi.org/10.7146/nomad.v15i3.148278

Issue

Section

Articles