Theorising in mathematics education research: differences in modes and quality
DOI:
https://doi.org/10.7146/nomad.v15i1.148235Abstract
In mathematics education research reports, we find a bewildering array of ”theories”, ”theoretical models” or ”theoretical frameworks”. The key notions and principles as well as the intellectual roots of these constructions are made more or less explicit, and the relations of theoretical entities to the empirical field under study are established in different ways. These differences imply discrepancies in quality. In this contribution we touch upon some of these issues. We attempt to show that an investigation of the relations between key concepts might help to read and evaluate theoretical underpinnings of research studies, and we argue that not all constructions that are labelled ”theoretical” meet the criteria we consider essential for productive theorising. We also allude to different modes of engaging with empirical material and different ways in which theories are used in research studies. The main part of our discussion is limited to examples of ”home-grown” theorising. The examples we have chosen to illustrate our points necessarily represent a biased selection.
References
Barbé, J., Bosch, M., Espinoza, L. & Gascon, J. (2005). Didactical restrictions on the teacher's practice: the case of limits of functions in Spanish high schools. Educational Studies in Mathematics, 59, 235-268. https://doi.org/10.1007/s10649-005-5889-z
Bergsten, C. & Jablonka, E. (2009, January). Interpreting students' reasoning through the lens of two different languages of description: integration or juxtaposition? Paper presented at CERME6, Lyon.
Bernstein, B. (2000). Pedagogy, symbolic control and identity. Theory, research and critique (Revised edition). Oxford: Rowman & Littlefield.
Bosch, M. & Gascon, J. (2006). 25 years of didactic transposition. ICMI Bulletin, 58, 51-65.
Chevallard, Y. (1991). La transposition didactique du savoir savant au savoir enseigné. Grenoble: Editions Pensée Sauvage.
Chevallard, Y. (1997). Familière et problématique, la figure du professeur. Texte issu d'un cours donné à la VIIIe école d'été de didactique des mathématiques, Saint-Sauves, 22-31 août 1995. (Also published 1997 in Recherches en Didactique des Mathématiques, 17 (3), 17-54.)
Chevallard, Y. (1998). Analyse des pratiques enseignantes et didactique des mathématiques: l'aproche anthropologique. In Actes de l'université d'été d'IREM de Clermont-Ferrand 'Analyse des pratiques enseignantes et didactique des mathématiques', La Rochelle, 4-11 juillet 1998, p. 91-120. (Also published 1999 in Recherches en Didactique des Mathématiques, 19 (2), 221-266)
Cobb, P. (2007). Putting philosophy to work. Coping with multiple research perspectives. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 3-37). Charlotte, NC: Information Age Publishing.
Confrey, J. Maloney, A., Nguyen, K., Mojica, G. & Myers, M. (2009). Equipartitioning/splitting as a foundation of rational number reasoning using learning trajectories. In M. Tzekaki, M. Kaldrimidou & C. Sakonidis (Eds.), Proceedings of the 33rd conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 1-8). Thessaloniki: PME.
Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K., et al. (1996). Understanding the limit concept: beginning with a coordinated process scheme. Journal of Mathematical Behavior, 15, 167-192. https://doi.org/10.1016/S0732-3123(96)90015-2
Dowling, P. (1998). The sociology of mathematics education: mathematical myths/ pedagogic texts. London: Falmer Press.
Dowling, P. (2007). Organising the social. Philosophy of Mathematics Education Journal, 21. Retrieved March 30, 2010 from http://people.exeter.ac.uk/PErnest/pome21
Dowling, P. (2009). Sociology as method: departures from the forensics of culture, text and knowledge. Rotterdam: Sense Publishers. https://doi.org/10.1163/9789087908133
Dowling, P. & Brown, A. (2010). Doing research / reading research. Re-interrogating education (2nd ed.). London: Routledge.
Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.), Advanced mathematical thinking (pp. 95-123). Dordrecht: Kluwer. https://doi.org/10.1007/0-306-47203-1_7
Fitzpatrick, R. & Morrison, E. J. (1971). Performance and product evaluation. In R. L. Thorndike (Ed.), Educational measurement (2nd ed.) (pp. 237-270). Washington, DC: American Council on Education.
Gahamanyi, M. (2010). Mathematics at work. A study of mathematical organisations in Rwandan workplaces and educational settings (Doctoral thesis. Linköping Studies in Behavioural Science No. 150). Department of Behavioural Sciences and Learning, Linköping University.
Gellert, U. (2007). Mathematik "in der Welt" und mathematische "Grundbildung" - zur Konsistenz der mathematikdidaktischen Rahmens von PISA. In T. Jahnke & W. Meyerhöfer (Eds.), Pisa & Co. Kritk eines Programms (2. erweiterte Auflage) (pp. 375-390). Berlin: Franzbecker.
Gravemeijer, K., Bowers, J. & Stephan, M. (2003). A hypothetical learning trajectory on measurement and flexible arithmetic. In M. Stephan, J. Bowers, P. Cobb & K. Gravemeijer (Eds.), Supporting students' development of measuring conceptions: analyzing students' learning in social context (Journal for Research in Mathematics Education. Monograph, Vol. 12) (pp. 51-66). Reston, VA: NCTM.
Hardy, N. (2009). Students' perceptions of institutional practices: the case of limits of functions in college level calculus courses. Educational Studies in Mathematics, 72 (3), 341-358. https://doi.org/10.1007/s10649-009-9199-8
Jablonka, E. (2007). Mathematical literacy: die Verflüchtigung eines ambitionierten Testkonstrukts. In T. Jahnke & W. Meyerhöfer (Eds.), Pisa & Co. Kritk eines Programms (2. erweiterte Auflage) (pp. 247-280). Berlin: Franzbecker.
Lamon, S. (2005). Teaching fraction and ratios for understanding. Mahwah, NJ: Lawrence Erlbaum Associates.
Lerman, S. (2006). Theories of mathematics education: is plurality a problem? Zentralblatt für Didaktik der Mathematik, 38 (1), 8-13. https://doi.org/10.1007/BF02655902
Le Roux, K. (2008). A critical discourse analysis of a real-world problem in mathematics: looking for signs of change. Language and Education, 22 (5), 307-326. https://doi.org/10.1080/09500780802152663
Lester, F. (2005). On the theoretical, conceptual, and philosophical foundations for research in mathematics education. Zentralblatt für Didaktik der Mathematik, 37, 457-467. https://doi.org/10.1007/BF02655854
Lithner, J. (2008). A research framework for creative and imitative reasoning. Educational Studies in Mathematics, 67 (3), 255-276. https://doi.org/10.1007/s10649-007-9104-2
Ligozat, F. & Schubauer-Leoni, M.-L. (2009, January). The joint action theory in didactics: Why do we need it in the case of teaching and learning mathematics? Paper presented at CERME6, Lyon.
Mason, J. & Waywood, A. (1996). The role of theory in mathematics education research. In A. Bishop, K. Clements, C. Keitel, J. Kilpatrick & C. Laborde (Eds.), International handbook of mathematics education (pp. 1054-1089). Dordrecht: Kluwer Academic Publishers.
Moore, R. (2006). Knowledge structures and intellectual fields: Basil Bernstein and the sociology of knowledge. In R. Moore, M. Arnot, J. Beck & H. Daniels (Eds.), Knowledge, power and educational reform: applying the sociology of Basil Bernstein (pp. 28-43). New York: Routledge.
Movshovitz-Hadar, N., Zaslavksy, O. & Inbar, S. (1987). An empirical classification model for errors in high school mathematics. Journal for Research in Mathematics Education, 18 (1), 3-14. https://doi.org/10.2307/749532
Mullis, I.V.S., Martin, M. O., Gonzalez, E. J. & Chrostowski, S. J. (2004). TIMSS 2003 international mathematics report: findings from IEA's Trends in International Mathematics Science Study at the fourth and eighth grades. Chestnut Hill, MA: Boston University International TIMSS Study Center.
Niss, M. (1999). Kompetencer og uddannelsesbeskrivelser. Uddannelse, 9, 21-29.
Niss, M. (2007). Reflections on the state of and trends in research on mathematics teaching and learning: from here to Utopia. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 1293- 1312). Charlotte, NC: Information Age Publishing.
OECD. (2006). PISA 2006 technical report. Paris: Author.
OECD. (2009). Learning mathematics for life: a perspective from PISA. Paris: Author.
Palm, T. (2002). The realism of mathematical school tasks: features and consequences (Doctoral thesis). Department of Mathematics, University of Umeå.
Palm, T. (2009). Theory of authentic task situations. In L. Verschaffel, B. Greer, W. van Dooren & S. Mukhopadhyay (Eds.), Words and worlds. Modelling verbal descriptions of situations (pp. 3-19). Rotterdam: Sense Publishers.
https://doi.org/10.1163/9789087909383_002
Pegg, J. & Tall, D. (2010). The fundamental cycle of concept construction underlying various theoretical frameworks. In B. Sriraman & L. English (Eds.), Theories of mathematics education. Seeking new frontiers (pp. 173-192). Berlin: Springer. https://doi.org/10.1007/978-3-642-00742-2_19
Ponte, J. da & Marques, S. (2007). Proportion in school mathematics textbooks: a comparative study. In D. Pitta-Pantazi & G. Philippou (Eds.), European research in mathematics educaiton V, proceedings of CERME5 (pp. 2443-2452). University of Cyprus.
Prediger, S., Bikner-Ahsbahs, A. & Arzarello, F. (2008). Networking strategies and methods for connecting theoretical approaches: first steps towards a conceptual framework. ZDM - The International Journal on Mathematics Education, 40 (2), 165-178. https://doi.org/10.1007/s11858-008-0086-z
Radford, L. (2008). Connecting theories in mathematics education: challenges and possibilities. ZDM - The International Journal on Mathematics Education, 40 (2), 317-327. https://doi.org/10.1007/s11858-008-0090-3
Sarama, J. & Clements, D. (2009). Early childhood mathematics education research. Learning trajectories for young children. New York: Routledge. https://doi.org/10.4324/9780203883785
Selter, C. (2009). Stimulating reflection on word problems by means of students' own productions. In L. Verschaffel, B. Greer, W. van Dooren & S. Mukhopadhyay (Eds.), Words and worlds. Modelling verbal descriptions of situations (pp. 315-332). Rotterdam: Sense Publishers. https://doi.org/10.1163/9789087909383_020
Sfard, A. (1991). On the dual nature of mathematical conceptions: reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics Education, 22, 1-36. https://doi.org/10.1007/BF00302715
Silver, E. & Herbst, P. (2007). Theory in mathematics education scholarship. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 39-67). Charlotte, NC: Information Age Publishing.
Simon, M. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26, 114-145. https://doi.org/10.2307/749205
Skemp, R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching, 77, 20-26.
Sriraman, B. & English, L. (2010). Surveying theories and philosophies of mathematics education. In B. Sriraman & L. English (Eds.), Theories of mathematics education. Seeking new frontiers (pp. 7-32). Berlin: Springer. https://doi.org/10.1007/978-3-642-00742-2
Steiner, H.-G. (1985). Theory of mathematics education (TME): an introduction. For the Learning of Mathematics, 5 (2), 11-17.
Svensson, L. (1984). Skill in learning and organising knowledge. In F. Marton, D. Hounsell & N. Entwistle (Eds.), The experience of learning: implications for teaching and studying in higher education (pp. 59-71). Edinburgh: Scottish Academic Press.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.