Posing problems using Cabri
DOI:
https://doi.org/10.7146/nomad.v12i3.148037Abstract
The purpose of Engström’s research was to investigate in which ways and to what extent three different teachers, one in Switzerland and two in Sweden, used a specific dynamical geometry software, Cabri Géomètre, in upper secondary school.
The method consisted mainly of field notes and audio recording during observations in classrooms. The field research was then analysed and evaluated according to the following questions: a) How do teachers pose problems and b) how do teachers make students’ experiences useful when Cabri Géomètre is accessible? The result showed that one important factor enabling to challenge the pupils in learning mathematics when using Cabri Géomètre is the way the teacher poses the problems or the questions. The word ’challenging’ means among other things, that the pupils continue asking themselves questions so that there will be continuous learning, not limited to finding just one correct answer.
References
Balacheff, N. (1993). Artificial intelligence and real teaching. In C. Keitel & K. Ruthven (Eds.), Learning from computers mathematics education and technology (pp 131-158). New York: Springer-Verlag. https://doi.org/10.1007/978-3-642-78542-9_6
Balacheff, N. & Sutherland, R. (1994). Epistemological domain of validity of microworlds: the case of LOGO and Cabri-géomètre. In R. Lewis & P. Mendelsohn (Eds.), Lessons from learning (pp. 137-150). N. Holland: Elsevier Science.
Dahland, G. (1998). Matematikundervisning i 1990-talets gymnasieskola. Ett studium av hur en didaktisk tradition har påverkats av informationsteknologins verktyg (Volym I+II, Rapport nr. 1998:5). Institutionen för pedagogik, Göteborgs universitet.
Dewey, J. (2004). Experience and education. In S. Hartman, S. Lundgren & R. M. Hartman R.M. (Eds.), Individ, skola och samhälle. Utbidningsfilosofiska texter i urval och översättning. Stockholm: Natur och kultur. (Original work published 1938)
Engström, L. (2006). Möjligheter till lärande i matematik. Lärares problem- formuleringar och dynamisk programvara (Ph. D. thesis). Stockholm: HLS förlag, Stockholm Institute of Education.
Hannafin, M., J., Land, S., & Hill, J., (1997). Learning in open-ended environments: assumptions, methods, and implications. Educational Technology,34(8), 48-55.
Hedrén, R. (1990). Logoprogrammering på mellanstadiet (Studies in Education. Dissertation no. 28). Linköpings universitet.
Goldstein, R., Povey, H. & Winbourne, P. (1996). Dynamic geometry. Coventry: National Council for Educational Technology.
Jones, K. (2002) Research on the use of dynamic geometry software: implications for the classroom. MicroMath, 18 (3), 18-20. Retrieved September 12, 2007 from http://eprints.soton.ac.uk/14689/
Keitel, C. & Ruthven, K. (Eds.) (1993). Learning from computers: mathematics education and technology. New York: Springer-Verlag. https://doi.org/10.1007/978-3-642-78542-9
Kilpatrick, J. & Davis, R. B. (1993). Computers and curriculum change in mathematics. In C. Keitel & K. Ruthven (Eds.), Learning from computers: mathematics education and technology (pp. 203-221). New York: Springer- Verlag. https://doi.org/10.1007/978-3-642-78542-9_9
Laborde, C. (1993). The computer as part of the learning environment: the case of geometry. In C. Keitel & K. Ruthven (Eds.), Learning from computers: mathematics education and technology (pp. 48-67). New York: Springer- Verlag. https://doi.org/10.1007/978-3-642-78542-9_3
Laborde, C., Kynigos, C., Hollebrands, K. & Strässer, R. (2006). Teaching and learning geometry with technology. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education. Past, present and future (pp. 275-304). Rotterdam: Sense Publishers. https://doi.org/10.1163/9789087901127_011
Lingefjärd, T., (2000). Mathematical modelling by prospective teachers using technology (Ph. D. thesis). Athens: University of Georgia.
Samuelsson, J., (2003). Nytt på nytt sätt? En studie över datorn som förändringsagent av matematikundervisningens villkor, metoder och resultat i skolår 7 - 9 (Ph. D. thesis). Pedagogiska institutionen, Uppsala universitet.
Schofield, J.,W. (1995). Computers and classroom culture. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511571268
Sierpinska, A. (1993). Criteria for scientific quality and relevance in the didactics of mathematics. In G. Nissen & M. Blomhøj (Eds.), Criteria for scientific quality and relevance in the didactics of mathematics (p. 35-74). IMFUFA, Roskilde University.
Sierpinska, A., (1998). Three epistemologies, three views of classroom communication: constructivism, sociocultural approaches, interactionism. In H. Steinbring, M. G. Bartolini-Bussi & A. Sierpinska (Eds.), Language and communication in mathematics classroom(pp. 30-62). Reston, VA.: National Council of Teachers of Mathematics.
Skolverket (2003). Lusten att lära - med fokus på matematik (Rapport nr. 221). Stockholm: Skolverket.
SKOLFS, (1994). 1994 års läroplan för de frivilliga skolformerna, Lpf 94. Stockho lm:Utbildningsdepartementet.
Säljö, R., (2000). Lärande i praktiken: ett sociokulturellt perspektiv. Stockholm: Bokförlaget Prisma.
Watson, A. & Mason, J. (1998). Questions and prompts for mathematical teaching. Derby: Association of Teachers of Mathematics.
Wikström, H. (1997). Att förstå förändring: modellbyggande, simulering och gymnasieelevers lärande (Ph. D. thesis). Göteborg: Acta Universitatis Gothoburgensis.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.