A problem-centered alternative to formalistic teaching

Authors

  • Tapio Keranto

DOI:

https://doi.org/10.7146/nomad.v2i2.146105

Abstract

Increased attention has been given in recent times to the teacher-centered and formalistic nature of mathematics teaching in schools, and well-founded proposals have been made to change this tradition toward a problem-centered direction which takes into account pupils' previous learning experiences and out-of-school practices. After a historical scrutiny and the criticism of the current formalistic tradition - 'first theory, then practice' - , the article outlines an alternative teaching strategy which provides at least in theory better opportunities for discussive and meaningful teaching-learning processes in school mathematics. Finally, some main results from one of the teaching experiments of the project "Contextual Ap- proach to the Teaching and Learning of Mathematics" are examined. The teaching experiment focused on developing proportional reasoning and ratio concept in the eighth grade of the comprehensive school. Although numerous problems were encountered in the implementation of the "contextual program" designed on the basis of the ideas of Freudenthal's didactical phenomenology and the ideas of the "Vygotskian school" of psychology, the learning results achieved by means of the contextual program were at least equally good and partly better than those achieved in groups taught by the textbook.

References

Ausubel, D. P. (1968). Educational Psychology. A cognitive view. New York: Holt, Rinehart & Winston.

Bauersfeld, H., Krummheuer, G., & Voigt, J. (1988). Interactional theory of learning and teaching mathematics and related microethnographical studies. In H.-G. Steiner & A. Vermandel (Eds.) Foundations and methodology of the discipline of mathematics education (pp. 174-188). Antwerpen: Proceedings of the TME Conference.

Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32-42. https://doi.org/10.2307/1176008

Carraher, T. N., Carraher, D. W., & Schliemann, A. D. (1985). Mathematics in streets and schools. British Journal of Developmental Psychology, 5, 21-29. https://doi.org/10.1111/j.2044-835X.1985.tb00951.x

Cobb, P., Wood, T., Yackel, E., Nicholls, J., Wheatley, G., Trigatti, B., & Perlwitz, M (1991). Assessment of a problem-centered second-grade mathematics project. Journal for Research in Mathematics Education, 22 (1), 3-29. https://doi.org/10.2307/749551

Cobb, P., Yackel, E. & Wood, T. (1992). A construedvist alternative to the representational view of mind in mathematics education. Journal for Research in Mathematics Education, 23 (1), 2-33. https://doi.org/10.2307/749161

Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing and mathematics. InL.B. Resnick (Ed.), Knowing, learning, and instruction. Essays in honour of Robert Glaser. Hillsdale, NJ: Erlbaum.

Davidov, V. V. (1982). The psychological structure and contents of the learning activity in school children. In R. Glaser & J. Lompscher (Eds.) Cognitive and motivational aspects of instruction (pp. 37-44). Amsterdam, Holland: North Holland Publishing Company.

Davidov, V. V. (1990). Types of generalization in instruction. Reston, VA: National Council of Teachers of Mathematics. (Original published in 1972).

De Lange, J. (1993). Real tasks and real assessment. In R. B. Davis & C. A. Maher (Eds.), Schools, mathematics, and the world of reality (pp. 263-287). New York: Allyn Bacon. De Villiers, M. D. (1986). The role of axiomatization in mathematics and mathematics teaching. Research Unit of Mathematics Education. Studies in Didactics of Mathematics 2.

Engeström, Y. (1983). Oppimistoiminta ja opetustyö. Tutkijaliiton julkaisusarja 24. Engeström, Y. (1984). Orientointi opetuksessa. Valtion koulutuskeskus. Julkaisusarja B. Nr o 29. Helsinki: Valtion Painatuskeskus.

Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht, Holland: Reidel.

Galperin, P. J. (1957). An experimental study in the formation of mental actions. In B. Simon (Ed.) Psychology in the Soviet Union (pp. 213-225). London: Routledge & Kegan Paul.

Guttman, L. (1944). A basis for scaling qualitative data. American Sociological Review, 9, 139-150. https://doi.org/10.2307/2086306

Hart, K. (1987). Strategies and errors in secondary mathematics. Mathematics in School 16 (2), 14-17.

Heller, P. M., Ahlgren, A., Post, T., Behr, M., & Lesh, R. (1989). Proportional reasoning: the effect of two context variables, rate type, and problem setting. Journal of Research in Science Teaching, 5, 205-220. https://doi.org/10.1002/tea.3660260303

Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence. New York: Basic Books. https://doi.org/10.1037/10034-000

Jones, G. A., & Thornton, C. A. (1992). Vygotsky revisited: nurturing young children's understanding of number. Focus on Learning in Mathematics, i5(2&3), 18-28. Karplus, R., Pulos, S., & Stage, E. K. (1983). Proportional reasoning of early adolescents. In R. Lesh & M. Landau (Eds.) Acquisition of mathematics concepts and processes (pp. 45-90). Orlando, FL: Academic Press.

Keitel, C. (1987). What are goals of mathematics for all? Journal of Curriculum Studies 19 (5), 393-407. https://doi.org/10.1080/0022027870190502

Keranto, T. (1986). Rational and empirical analysis for the measurement and instruction of proportional reasoning in school. In P. Kupari (Ed.) Mathematics education in Finland: Yearbook 1985 (pp. 1-33). University of Jyväskylä. Institute for Educational Research. Publication Series B. Theory into Practice 3.

Keranto, T. (1990a). Kontekstuaalinen lähestymistapa matematiikan opetuksen ja oppimiseen. Osa I. Oulun yliopiston kasvatustieteiden tiedekunnan tutkimuksia 67. Oulun yliopisto.

Keranto, T. (1990b). Kontekstuaalinen lähestymistapa matematiikan opetuksen ja oppimiseen. Osa II. Oulun yliopiston kasvatustieteiden tiedekunnan tutkimuksia 71. Oulun yliopisto.

Keranto, T. (1990c). Contextual approach to the teaching and learning of mathematics. In Proceedings of PME 14, 35-42, Vol II, Mexico 1990.

Keranto, T. (1991). Kontekstuaalinen lähestymistapa matematiikan opetuksen ja oppimiseen. Osa III. Oulun yliopiston kasvatustieteiden tiedekunnan tutkimuksia 80. Oulun yliopisto.

Keranto, T. (1992). Kontekstuaalinen lähestymistapa matematiikan opetuksen ja oppimiseen. Osa IV. Oulun yliopiston kasvatustieteiden tiedekunnan tutkimuksia 82. Oulun yliopisto.

Keranto, T., & Kumpulainen, K. (1991). Tietokone oppilasarvioinnin apuvälineenä. Kasvatus, 22 (2), 142-146.

Kitcher, P. (1984). The nature of mathematical knowledge. Oxford: Oxford University Press. https://doi.org/10.1093/0195035410.001.0001

Kline, M. (1980). Mathematics: The loss of certainty. Oxford: Oxford University Press. Kupari, P. (1983). Millaista matematiikkaa peruskoulun päättyessä osataan? Jyväskylän yliopisto. Kasvatustieteiden tutkimuslaitoksen julkaisuja 342.

Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139171472

Lave, J., Murtaugh, M., & de la Rocha, O. (1984). The dialectic of arithmetic in grocery shopping. In B. Rogoff & J. Lave (Eds.) Everyday cognition: Its development in social context (pp. 95-116). Cambridge, MA: Harvard University Press.

Leontyev, A. N. (1977). Toiminta, tietoisuus,persoonallisuus. Helsinki: Kansankulttuuri. Noelting, G. (1980a). The development of proportional reasoning and ratio concept. Part I. Educational Studies in Mathematics, 11, 217-253. https://doi.org/10.1007/BF00304357

Noelting, G. (1980b). The development of proportional reasoning and ratio concept. Part II. Educational Studies in Mathematics, 11, 331-363. https://doi.org/10.1007/BF00697744

Nunes, T., Schliemann, A. D., & Carraher, D. W. (1993). Street mathematics and school mathematics. Cambridge: Cambridge University Press.

Post, T., Behr, M., & Lesh, R. (1988). Proportionality and the development of prealgebra understandings. In A.F. Coxford & A.P. Shulte (Eds.) The ideas of algebra, K-12, Yearbook 1988 (78-90), NCTM.

Resnick, L. B. (1987). Learning in school and out. Educational Researcher, 16(9), 13-20. Schmittau, J. (1992). Vygotskian scientific concepts: implications for mathematics education. Focus on Learning Problems in Mathematics, i5(2&3), 29-39. https://doi.org/10.2307/1175725

Shibata, T. (1973). The role of axioms in contemporary mathematics and mathematical education. In A.G. Howson (Ed.) Developments in mathematical education: Proceedings of the 2nd ICME (pp. 262-271). Cambridge University Press. https://doi.org/10.1017/CBO9781139013536.017

Streefland, L. (1984). Search for the roots of ratio: Some thoughts on the long term process (towards... theory). Part I. Educational Studies in Mathematics, 15, 327-348. Streefland, L. (1985). Search for the roots of ratio: some thoughts on the long term process (towards... theory). Part II. Educational Studies in Mathematics, 16, 75-94. https://doi.org/10.1007/BF00354884

Strickland, J. F., & Denitto, J. F. (1989). The power of proportions in problem solving. Mathematics Teacher, January, 11-13. https://doi.org/10.5951/MT.82.1.0011

Taylor, L. (1992). Vygotskian influences in mathematics education with particular reference to attitude development. Focus on Learning Problems in Mathematics, 15(2&3), 3-17.

Thorn, R. (1973). Modern mathematics: does it exist? In A.G. Howson (Ed.) Developments in mathematical education: Proceedings of the 2nd ICME (pp. 194-209). Cambridge University Press. https://doi.org/10.1017/CBO9781139013536.011

Tourniaire, F., & Pulos, S. (1985). Proportional reasoning: a review of the literature. Educational Studies in Mathematics, 16, 181-204. https://doi.org/10.1007/PL00020739

Vergnaud, G. (1983). Multiplicative structures. In R. Lesh & M. Landau (Eds.) Acquisition of mathematics concepts and processes (pp. 127-174). Orlando, FL: Academic Press. Voigt, J. (1992). Negotiation of mathematical meaning in classroom processes. Paper presented in Working Group 4, Subgroup 1, ICME 7, Quebec, Canada.

Vygotsky, L. S. (1962). Thought and language. Cambridge, Massachusetts: M.I.T. Press. Vygotsky, L. S. (1978). Mind in society: the development of higher psychological processes. Cambridge, MA: Harvard University Press.

White, W. & Saltz, E. (1957). Measurement of reproducibility. Psychological Bulletin 54 (2), 81-99. https://doi.org/10.1037/h0040628

Wood, T. & Yackel, E. (1990). The development of collaborative dialogue within small group interactions. In L. P. Steffe & T. Wood (Eds.) Transforming children s mathematics education. International perspectives (pp. 244-252). Hillsdale, NJ: Lawrence Erlbaum.

Mathematics textbooks

Koivisto, M., Leppävuori, S-L., & Simolin, I. (1990). Taso 8. Matematiikka. Espoo: Weilin+Göös.

Koponen, R., & Kupiainen, A. (1985). Peruskoulun matematiikka 8. Keuruu: Otava.

Merikoski, K. (1952). Kaupunkikansakoulun laskentokirja, I-II osa 3. ja 6, luokkia varten. Helsinki: Valistus.

Penttilä, T., Simolin, I., & Lyytinen, P. (1988). Matematiikkaa 6. Espoo: Weilin-Göös.

Penttilä, T., Simolin, I., Saranen, E., & Korhonen, H. (1986). Matematiikkaa 8. Espoo: Weilin-Göös.

Downloads

Published

1994-06-01

How to Cite

Keranto, T. (1994). A problem-centered alternative to formalistic teaching. NOMAD Nordic Studies in Mathematics Education, 2(2), 36–57. https://doi.org/10.7146/nomad.v2i2.146105

Issue

Section

Articles