Does a Single Bout of Exercise Improve Memory and Learning?
DOI:
https://doi.org/10.7146/sjsep.v7i.150557Keywords:
Physical activity, Learning, Declarative memory, Procedural memoryAbstract
Physical activity in general, and a single bout of exercise in particular, has been found to have a positive effect on memory and learning. However, findings have shown different results for declarative memory (explicit knowledge) and procedural memory (implicit knowledge). The aim of this interventional study was to investigate the effects of a single bout of moderate-to-vigorous exercise during memory consolidation on both memory types compared to physical inactivity. A between-within group study design consisted of two test sessions with 24 hours in between. Forty-four participants were randomized into an exercise group (18 males, 4 females, M = 24 years) or a control group (18 males, 4 females, M = 25.2 years). Both groups underwent memory testing the first day, with the exercise group afterwards performing a single bout of moderate-to-vigorous physical activity (cycling) for approximately 30 minutes. Memory tests were repeated the second day. Results showed that the improvement for the exercise group was significantly better compared to the control group on measures of procedural memory. No differences were found regarding declarative memory.
References
Ahmed S. Qazi, Daphne Schmid, Nicole Gridley, Kate Lambourne, Andrew J. Daly-Smith, Andrew J. Daly-Smith, & Phillip D. Tomporowski. (2024). The effects of acute exercise on long-term episodic memory: a systematic review and meta-analysis. Frontiers in Cognition, 3. https://doi.org/10.3389/fcogn.2024.1367569
Benedict, R. H. B., Schretlen, D., Groninger, L., Dobraski, M., & Shpritz, B. (1996). Revision of the Brief Visuospatial Memory Test: Studies of Normal Performance, Reliability, and Validity. Psychological Assessment, 8(2), 145–153. https://doi.org/10.1037/1040-3590.8.2.145
Benedict, R. H. B. (1997). Brief Visuospatial Memory Test-Revised. Psychological Assessment Resources, Inc.
Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine and science in sports and exercise, 14(5), 377-381.
Brown, R. M., & Robertson, E. M. (2007). Off-Line Processing: Reciprocal Interactions between Declarative and Procedural Memories. The Journal of Neuroscience, 27(39), 10468–10475. https://doi.org/10.1523/JNEUROSCI.2799-07.2007
Chen, J., Roig, M., & Wright, D. L. (2020). Exercise reduces competition between procedural and declarative memory systems. eNeuro, 7(4), 1–9. https://doi.org/10.1523/ENEURO.0070-20.2020
Cohen, J. W. (1988). Statistical power analysis for the behavioral sciences (2nd edn). Hillsdale, NJ: Lawrence Erlbaum Associates.
Cohen, J. (1992). A Power Primer. Psychological Bulletin, 112(1), 155–159. https://doi.org/10.1037/0033-2909.112.1.155
Craig, C. L., Marshall, A. L., Sjöström, M., Bauman, A. E., Booth, M. L., Ainsworth, B. E., Pratt, M., Ekelund, U., Yngve, A., Sallis, J. F., & Oja, P. (2003). International physical activity questionnaire: 12-Country reliability and validity. Medicine and Science in Sports and Exercise, 35(8), 1381–1395. https://doi.org/10.1249/01.MSS.0000078924.61453.FB
Crush, E. A., & Loprinzi, P. D. (2017). Dose-Response Effects of Exercise Duration and Recovery on Cognitive Functioning. Perceptual and Motor Skills, 124(6), 1164–1193. https://doi.org/10.1177/0031512517726920
Dunbar, C. C., Robertson, R. J., Baun, R., Blandin, M. F., Metz, K., Burdett, R., & Goss, F. L. (1992). The validity of regulating exercise intensity by ratings of perceived exertion. Medicine & Science in Sports & Exercise, 24, 94–99.
Eich, T. S., & Metcalfe, J. (2009). Effects of the stress of marathon running on implicit and explicit memory. Psychonomic Bulletin & Review, 16(3), 475–479. https://doi.org/10.3758/PBR.16.3.475
Eichenbaum, H. (2011). The Cognitive Neuroscience of Memory: An Introduction (Second edition.). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199778614.001.0001
El-Sayes, J., Harasym, D., Turco, C. V., Locke, M. B., & Nelson, A. J. (2019). Exercise-Induced Neuroplasticity: A Mechanistic Model and Prospects for Promoting Plasticity. The Neuroscientist (Baltimore, Md.), 25(1), 65–85. https://doi.org/10.1177/1073858418771538
Field, A. P. (2018). Discovering statistics using IBM SPSS statistics (5th edition). Sage Publications.
Frisch, N., Heischel, L., Wanner, P., Kern, S., Gürsoy, Ç. N., Roig, M., Feld, G., & Steib, S. (2023). An acute bout of high-intensity exercise affects nocturnal sleep and sleep-dependent memory consolidation. Journal of Sleep Research, e14126–e14126. https://doi.org/10.1111/jsr.14126
Gilhooly, K. J., Lyddy, F. M., Pollick, F., & Buratti, S. (2022). Cognitive psychology (Second edition). McGraw Hill.
Groth-Marnat, G. (1993). Handbook of psychological assessment [Review of Handbook of psychological assessment]. Canadian Journal of Counselling, 27(2), 140-. Canadian Counselling and Psychotherapy Association.
Heath, E. M. (1998). Borg's Perceived Exertion and Pain Scales. Medicine & Science in Sports & Exercise, 30 (9), 1461.
Holman, S. R., & Staines, W. R. (2021). The effect of acute aerobic exercise on the consolidation of motor memories. Experimental Brain Research, 239(8), 2461–2475. https://doi.org/10.1007/s00221-021-06148-y
Huang, T., Larsen, K. T., Ried-Larsen, M., Møller, N. C., & Andersen, L. B. (2014). The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: A review. Scandinavian Journal of Medicine & Science in Sports, 24(1), 1–10. https://doi.org/10.1111/sms.12069
Hötting, K., & Röder, B. (2013). Beneficial effects of physical exercise on neuroplasticity and cognition. Neuroscience and Biobehavioral Reviews., 37(9), 2243–2257. https://doi.org/10.1016/j.neubiorev.2013.04.005
Labban, J. D., & Etnier, J. L. (2011). Effects of Acute Exercise on Long-Term Memory. Research Quarterly for Exercise and Sport, 82(4), 712–721. https://doi.org/10.1080/02701367.2011.10599808
Loprinzi, P. D. (2018). Intensity-specific effects of acute exercise on human memory function: Considerations for the timing of exercise and the type of memory. Health Promotion Perspectives, 8(4), 255–262. https://doi.org/10.15171/hpp.2018.36
Loprinzi, P. D., Blough, J., Crawford, L., Ryu, S., Zou, L., & Li, H. (2019). The temporal effects of acute exercise on episodic memory function: Systematic review with meta-analysis. Brain Sciences, 9(4), 87-. https://doi.org/10.3390/brainsci9040087
Loprinzi, P. D., Roig, M., Etnier, J. L., Tomporowski, P. D., & Voss, M. (2021). Acute and chronic exercise effects on human memory: What we know and where to go from here. Journal of Clinical Medicine, 10(21), 4812-. https://doi.org/10.3390/jcm10214812
Magalhaes, S. de S., Malloy-Diniz, L. F., & Hamdan, A. C. (2012). Validity convergent and reliability test-retest of the rey auditory verbal learning test. Clinical Neuropsychiatry, 9(3), 129–137.
Maxwell, S. E., Kelley, K., & Rausch, J. R. (2008). Sample size planning for statistical power and accuracy in parameter estimation. Annual Review of Psychology, 59(1), 537–563. https://doi.org/10.1146/annurev.psych.59.103006.093735
Montag, C., Felten, A., Markett, S., Fischer, L., Winkel, K., Cooper, A., & Reuter, M. (2014). The Role of the BDNF Val66Met Polymorphism in Individual Differences in Long-Term Memory Capacity. Journal of Molecular Neuroscience, 54(4), 796–802. https://doi.org/10.1007/s12031-014-0417-1
Pereira, A. C., Huddleston, D. E., Brickman, A. M., Sosunov, A. A., Hen, R., McKhann, G. M., Sloan, R., Gage, F. H., Brown, T. R., & Small, S. A. (2007). in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences - PNAS, 104(13), 5638–5643. https://doi.org/10.1073/pnas.0611721104
Piepmeier, A. T., & Etnier, J. L. (2015). Brain-derived neurotrophic factor (BDNF) as a potential mechanism of the effects of acute exercise on cognitive performance. Journal of Sport and Health Science, 4(1), 14–23. https://doi.org/10.1016/j.jshs.2014.11.001
Rey, A. (1964). L'examen clinique en psychologie, Paris: Presses Universitaires de France, 1964. Chemotherapy and objective cognitive functioning, 95, 477-487.
Roig, M., Skriver, K., Lundbye-Jensen, J., Kiens, B., & Nielsen, J. B. (2012). A single bout of exercise improves motor memory. PloS One, 7(9), e44594–e44594. https://doi.org/10.1371/journal.pone.0044594
Roig, M., Nordbrandt, S., Geertsen, S. S., & Nielsen, J. B. (2013). The effects of cardiovascular exercise on human memory: A review with meta-analysis. Neuroscience and Biobehavioral Reviews, 37(8), 1645–1666. https://doi.org/10.1016/j.neubiorev.2013.06.012
Roig, M., Thomas, R., Mang, C. S., Snow, N. J., Ostadan, F., Boyd, L. A., & Lundbye-Jensen, J. (2016). Time-Dependent Effects of Cardiovascular Exercise on Memory. Exercise and Sport Sciences Reviews, 44(2), 81–88. https://doi.org/10.1249/JES.0000000000000078
Schmid, D., Qazi, A., Scott, N. M., & Tomporowski, P. D. (2023). The effects of physical activity timing and complexity on episodic memory: A randomized controlled trial. Psychology of Sport and Exercise, 64, 102332–102332. https://doi.org/10.1016/j.psychsport.2022.102332
Schmidt-Kassow, M., Schädle, S., Otterbein, S., Thiel, C., Doehring, A., Lötsch, J., & Kaiser, J. (2012). Kinetics of serum brain-derived neurotrophic factor following low-intensity versus high-intensity exercise in men and women. Neuroreport, 23(15), 889–893. https://doi.org/10.1097/WNR.0b013e32835946ca
Schmidt-Kassow, M., Deusser, M., Thiel, C., Otterbein, S., Montag, C., Reuter, M., Banzer, W., & Kaiser, J. (2013). Physical Exercise during Encoding Improves Vocabulary Learning in Young Female Adults: A Neuroendocrinological Study. PloS One, 8(5), e64172–e64172. https://doi.org/10.1371/journal.pone.0064172
Sng, E., Frith, E., & Loprinzi, P. D. (2018). Temporal Effects of Acute Walking Exercise on Learning and Memory Function. American Journal of Health Promotion, 32(7), 1518–1525. https://doi.org/10.1177/0890117117749476
Squire, L. R. (2004). Memory systems of the brain: A brief history and current perspective. Neurobiology of Learning and Memory, 82(3), 171–177. https://doi.org/10.1016/j.nlm.2004.06.005
Thomas, R., Johnsen, L. K., Geertsen, S. S., Christiansen, L., Ritz, C., Roig, M., & Lundbye-Jensen, J. (2016a). Acute exercise and motor memory consolidation: The role of exercise intensity. PloS One, 11(7), e0159589–e0159589. https://doi.org/10.1371/journal.pone.0159589
Thomas, R., Beck, M. M., Lind, R. R., Korsgaard Johnsen, L., Geertsen, S. S., Christiansen, L., Ritz, C., Roig, M., & Lundbye-Jensen, J. (2016b). Acute Exercise and Motor Memory Consolidation: The Role of Exercise Timing. Neural Plasticity, 2016, 6205452–11. https://doi.org/10.1155/2016/6205452
Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organization of memory (pp. 381–403). Academic Press.
Venezia, A. C., Weiss, L. R., Nielson, K. A., & Smith, J. C. (2023). Moderate-to-vigorous intensity cycling exercise immediately after visual learning enhances delayed recognition memory performance. Psychology of Sport and Exercise, 69, 102498–102498. https://doi.org/10.1016/j.psychsport.2023.102498
Vetenskapsrådet. (2002). Forskningsetiska principer inom humanistisk-samhällsvetenskaplig forskning (Vetenskapsrådets rapportserie 1-2011). Stockholm: Vetenskapsrådet.
Wang, X., Zhu, R., Zhou, C., & Chen, Y. (2020). Distinct effects of acute aerobic exercise on declarative memory and procedural memory formation. Brain Sciences, 10(10), 1–51. https://doi.org/10.3390/brainsci10100691
Wanner, P., Cheng, F.-H., & Steib, S. (2020). Effects of acute cardiovascular exercise on motor memory encoding and consolidation: A systematic review with meta-analysis. Neuroscience and Biobehavioral Reviews, 116, 365–381. https://doi.org/10.1016/j.neubiorev.2020.06.018
Wechsler, D. (2008). Wechsler Adult Intelligence Scale—Fourth Edition Administration and Scoring Manual. San Antonio, TX: Pearson Assessment
Weinberg, L., Hasni, A., Shinohara, M., & Duarte, A. (2014). A single bout of resistance exercise can enhance episodic memory performance. Acta Psychologica, 153, 13–19. https://doi.org/10.1016/j.actpsy.2014.06.011
World Medical Association. (2013). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. Jama, 310(20), 2191-2194.