Kunstig intelligens i den offentlige forvaltning: sammenhænge mellem algoritmisk regulering og automatisering af beslutninger i de danske AI ”signaturprojekter”

Forfattere

  • Jakob Laage-Thomsen
  • Helene Friis Ratner

DOI:

https://doi.org/10.7146/politica.v57i2.153262

Nøgleord:

kunstig intelligens/AI, offentlig administration, AI signaturprojekter, beslutningsstøtte, algoritmisk regulering, automatisering

Resumé

I perioden 2020-2022 investerede regeringen, KL og Danske Regioner i 40 ”signaturprojekter” med henblik på at skabe erfaringer med kunstig intelligens (AI) i den offentlige sektor. Artiklen anvender en udvidet typologi fra frameworket ”algoritmisk regulering” til at undersøge, hvilken form for algoritmisk regulering signaturprojekterne er udtryk for, og hvordan AI udvikles til at understøtte og automatisere beslutninger i den danske offentlige forvaltning. Analysen bidrager konceptuelt og empirisk til den eksisterende litteratur ved at (a) udvikle en udvidet typologi til at klassificere AI som regulering og automatisering af beslutninger og (b) vise sammenhængen mellem regulerings- og beslutningsstøtteformer på tværs af samtlige danske AI signaturprojekter. Det åbner op for en nuanceret diskussion af, hvordan AI fremmer forskellige former for algoritmisk regulering og beslutningsautomatisering på forskellige forvaltningsområder samt implikationerne af dette for relationen mellem stat og borger.

Referencer

Amoore, Louise (2013). The politics of possibility: Risk and security beyond probability. Duke University Press.

Bagger, Christoffer, Benjamin Schwarz, Rikke Frank Jørgensen, Stine Lomborg, Sille Søe og Christina Neumayer (2023). Mapping the automated decision-making landscape in the Danish welfare state: Working Paper #01 of the CHANSE-funded research consortium AUTO-WELF.

Baldwin, Robert, Colin Scott og Christopher Hood (1998). Introduction, i pp. 1-56 i Robert Baldwin, Colin Scott og Christopher Hood (red.), A reader on regulation. Oxford University Press.

Binns, Reubens (2022). Human judgment in algorithmic loops: Individual justice and automated decision-making. Regulation & Governance 16 (1): 197-211.

Bovens, Mark og Stavros Zouridis (2002). From street‐level to system‐level bureaucracies: How information and communication technology is transforming administrative discretion and constitutional control. Public Administration Review 62 (2): 174-184.

Campolo, Alexander og Katia Schwerzmann (2023). From rules to examples: Machine learning’s type of authority. Big Data & Society 10 (2).

Cardon, Dominique, Jean-Philippe Cointet og Antoine Mazières. (2018). Neurons spike back: The invention of inductive machines and the artificial intelligence controversy. Reseaux 211 (5): 173-220.

Cevolini, Alberto og Elena Esposito (2020). From pool to profile: Social consequences of algorithmic prediction in insurance. Big Data & Society 7 (2).

Danaher, John, Michale J. Hogan, Chris Noone et al. (2017). Algorithmic governance: Developing a research agenda through the power of collective intelligence. Big Data & Society 4 (2).

Datatilsynet (2022). Udtalelse fra Datatilsynet: Kommuners hjemmel til AI-profileringsværktøjet Asta, 18. maj.

Datatilsynet (2023). Brug af kunstig intelligens i den offentlige sektor. Kortlægning.

Digitaliseringsstyrelsen, KL og Danske Regioner (2021). Temperaturmåling af signaturprojekterne.

EC HLEG, European Commission’s High Level Expert Group on artificial intelligence. (2019). A definition of AI: main capabilities and disciplines.

Engin, Zeynep og Philip Treleaven (2019). Algorithmic government: Automating public services and supporting civil servants in using data science technologies. The Computer Journal 62 (3): 448-460.

Flügge, Asbjørn Ammitzbøll A., Naja Holten Møller, Thomas T. Hildebrandt og Henrik Palmer Olsen (2022). Er du grøn? Algoritmer til beslutningsstøtte i det offentlige. En kvalitativ undersøgelse af sagsbehandleres praksis og brug af ASTA til profilering af nyledige dagpengemodtagere. Københavns Universitet, Det Naturvidenskabelige Fakultet.

Flyvbjerg, Bent (2006). Five misunderstandings about case-study research. Qualitative Inquiry 12 (2): 219-245.

Hansen, Sne Scott (2022). Public AI imaginaries: How the debate on artificial intelligence was covered in Danish newspapers and magazines 1956-2021. Nordicom Review 43 (1): 56-78.

Jarlner, Michael og Kim Escherich (red.) (2021). Fra velfærdsstat til overvågningsstat: Algoritmernes magt i den offentlige forvaltning. DJØF Forlag.

Jensen, Didde Cramer (2018). Does core task matter for decision-making? A comparative case study on whether differences in job characteristics affect discretionary street-level decision-making. Administration & Society 50 (8): 1125-1147.

Justesen, Lise og Ursula Plesner (2018). Fra skøn til algoritme: Digitaliseringsklar lovgivning og automatisering af administrativ sagsbehandling. Tidsskrift for Arbejdsliv 20 (3): 9-23.

Jørgensen, Rikke Frank (2023). Data and rights in the digital welfare state: The case of Denmark. Information, Communication & Society 26 (1): 123-138.

Koop, Christel og Martin Lodge (2017). What is regulation? An interdisciplinary concept analysis. Regulation & Governance 11 (1): 95–108.

Levi-Faur, David (2014). The welfare state: A regulatory perspective. Public Administration 92 (3): 599-614.

Munro, Eileen (2019). Decision-making under uncertainty in child protection: Creating a just and learning culture. Child & Family Social Work 24 (1): 123-130.

Næsborg-Andersen, Ayo, Ole Hammerslev og Jøren Ullits (2023). Beslutningsunderstøttende algoritmer i det offentlige: Påvirkningen af sagsbehandlerens skøn og begrundelse. Politica 55 (3): 199-217.

Pors, Anja Svejgaard, Kirstine Zink Pedersen og Line Kirkegaard (2023). Drømmen om datadrevet velfærd. Politica 55 (3): 218-241.

Ratner, Helene Friis (2019). Europeanizing the Danish school through national testing: Standardized assessment scales and the anticipation of risky populations. Science, Technology, & Human Values 45 (2): 212-234.

Ratner, Helene Friis og Kasper Elmholdt (2023). Algorithmic constructions of risk: Anticipating uncertain futures in child protection services. Big Data & Society 10 (2).

Ratner, Helene Friis og Ida Schrøder (2023). Ethical plateaus in Danish child protection services: The rise and demise of algorithmic models. Science & Technology Studies.

Regeringen (2019). National strategi for kunstig intelligens. København: Regeringen.

Sun, Tara Qian og Rony Medaglia (2019). Mapping the challenges of Artificial Intelligence in the public sector: Evidence from public healthcare. Government Information Quarterly 36 (2): 368-383.

Thompson, Jamie (2022). A guide to abductive thematic analysis. The Qualitative Report 27 (5): 1410-1421.

Timmermans, Stefan og Iddo Tavory (2012). Theory construction in qualitative research: From grounded theory to abductive analysis. Sociological Theory 30 (3): 167-186.

Ulbricht, Lena og Karen Yeung (2022). Algorithmic regulation: A maturing concept for investigating regulation of and through algorithms. Regulation & Governance 16 (1): 3-22.

Williamson, Ben (2014). Knowing public services: Cross-sector intermediaries and algorithmic governance in public sector reform. Public Policy and Administration 29 (4): 292-312.

Yeung, Karen (2018). Algorithmic regulation: A critical interrogation. Regulation & Governance 12 (4): 505-523.

Yeung, Karen og Martin Lodge (2019). Algorithmic regulation: An introduction. New York: Oxford University Press.

Zarsky, Tal (2016). The trouble with algorithmic decisions: An analytic road map to examine efficiency and fairness in automated and opaque decision making. Science, Technology, & Human Values 41 (1): 118-132.

Downloads

Publiceret

2025-04-11

Citation/Eksport

Laage-Thomsen, J., & Ratner, H. F. (2025). Kunstig intelligens i den offentlige forvaltning: sammenhænge mellem algoritmisk regulering og automatisering af beslutninger i de danske AI ”signaturprojekter”. Politica, 57(2), 21–42. https://doi.org/10.7146/politica.v57i2.153262

Nummer

Sektion

Artikler uden for tema