Species identification using ZooMS, with reference to the exploitation of animal resources in the medieval town of Odense
DOI:
https://doi.org/10.1080/21662282.2018.1468154Keywords:
ZooMS, species identification, collagen, middle age, animal resources, long distance trade, zooarchaeology, archaeologyAbstract
ZooMS (Zooarchaeology by Mass Spectrometry) is increasingly being used as a method for species identification of archaeological and historical remains. The method identifies species from the peptide mass fingerprint of extracted collagen – the principal protein of bone, ivory, dentine, leather, and parchment. ZooMS has the advantages that it is a fast and simple method, that requires only small sample sizes or even non-destructive sampling. The taxonomic resolution of the method varies, but ZooMS is diagnostic for most domesticated animals and for the relatively depauperate Scandinavian fauna, although some groups (seals, martens) cannot be resolved, and it cannot discriminate some domesticates (dog, cattle) from their wild counterparts. In this article, we overview the method and demonstrate the value of ZooMS and illustrate our points via a case study of 20 samples from 12th to 14th century layers in the Danish medieval town of Odense. Four artefacts were tested by a non-destructive eraser technique because of their uniqueness, but only one could be identified. The remaining 16 were identified following destructive analysis of the sample, one sample could not be identified. Through the identification of a gaming piece as walrus tusk the analysis demonstrated the long distance trade networks of Odense and the pursuit of some inhabitants for luxury products and high living standards. Conversely, the species identification of combs showed that the medieval comb maker would use the resources immediately available to him to create an affordable everyday object rather than rely on imported antler.
References
Arneborg, J., 1999. Nordboliv i Grønland. Dagligliv i Danmarks Middelalder. Available from: http://www.forskningsdatabasen.dk/en/catalog/2286836469
Arneborg, J., 2000. Greenland and Europe. In William W. Fitzhugh and Elisabeth Ward (eds). Vikings. Washington, London: Smithsonian Institution Press. 304-318.
Ashby, S.P., 2009. Combs, contact and chronology: reconsidering hair combs in early-historic and viking-age atlantic Scotland, Medieval Archaeology, 53 (1), 1-33. Routledge. https://doi.org/10.1179/007660909X12457506806081
Ashby, S.P., 2014. A viking way of life. Stroud, Gloucestershire: Amberley Publishing Limited. Ashby, S.P., Coutu, A.N., and Sindbæk, S.M., 2015. Urban networks and arctic outlands: craft specialists and reindeer antler in viking towns, European Journal of Archaeology, 18 (4), 679-704. Routledge. https://doi.org/10.1179/1461957115Y.0000000003
Badenhorst, S. and Plug, I., 2011. Unidentified specimens in zooarcheaology. Available from http://146.141.12.21/bitstream/handle/10539/13828/2011.v46.BADENHORST_AND_PLUG_Unidentified_specimens_in_zooarchaeology.pdf?sequence=1
Brandt, L.Ø., et al., 2014. Species identification of archaeological skin objects from danish bogs: comparison between mass spectrometry-based peptide sequencing and microscopy- based methods. PloS One, 9 (9), e106875. https://doi.org/10.1371/journal.pone.0106875
Brøgger, A.W., 1947. Kongespeilet. H. Oslo: Aschehoug. Brown, S., et al. 2016. Identification of a new hominin bone from denisova cave, siberia using collagen fingerprinting and mitochondrial DNA analysis. Scientific Reports, 6 (March), 23559. https://doi.org/10.1038/srep23559
Buckley, M., et al., 2014. Species identification of archaeological marine mammals using collagen fingerprinting. Journal of Archaeological Science, 41 (January), 631-641. https://doi.org/10.1016/j.jas.2013.08.021
Buckley, M., Larkin, N., and Collins, M., 2011. Mammoth and mastodon collagen sequences; survival and utility, Geochimica Et Cosmochimica Acta, 75 (7), 2007-2016. Elsevier. https://doi.org/10.1016/j.gca.2011.01.022
Buckley, M., et al., 2009. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry, Rapid Communications in Mass Spectrometry: RCM, 23 (23), 3843-3854. Wiley Online Library. https://doi.org/10.1002/rcm.4316
Buckley, M., Harvey, V.L., and Chamberlain, A.T., 2017. Species identification and decay assessment of late pleistocene fragmentary vertebrate remains from pin hole cave (Creswell Crags, UK) using collagen fingerprinting. Boreas, 46, 402-411. January. https://doi.org/10.1111/bor.12225
Cassidy, L.M., et al., 2017. Capturing goats: documenting two hundred years of mitochondrial DNA diversity among goat populations from Britain and Ireland. Biology Letters, 13 (3), 20160876. https://doi.org/10.1098/rsbl.2016.0876
Charlton, S., et al., 2016. Finding Britain's last hunter-gatherers: a new biomolecular approach to 'unidentifiable' bone fragments utilising bone collagen. Journal of Archaeological Science, 73 (September), 55-61. https://doi.org/10.1016/j.jas.2016.07.014
Christensen, A.S., 1988. Middelalderbyen Odense. Viby J: Centrum.
Christophersen, A., 2015. Performing towns. Steps towards an understanding of medieval urban communities as social practice, Archaeological Dialogues, 22 (2), 109-132. Cambridge University Press. https://doi.org/10.1017/S1380203815000161
Clutton-Brock, J., 1999. A natural history of domesticated mammals. Cambridge: Cambridge University Press.
Coutu, A.N., Whitelaw, G., and Le Roux, P. 2016. Earliest evidence for the ivory trade in Southern Africa. African Archaeological. Available from: http://eprints.whiterose.ac.uk/105511/1/Coutu_et_al_2016_African_Archaeological_Review.pdf
Demarchi, B., et al. 2016. Protein sequences bound to mineral surfaces persist into deep time. eLife, 5 (September), e17092. https://doi.org/10.7554/eLife.17092
Enghoff, I.B., 2006. Pattedyr Og Fugle Fra Markedspladsen I Ribe, ASR 9 Posthuset. In: C. Feveile (ed.), Ribe Studier. Højbjerg: Jysk Arkæologisk Selskab, 167-187.
Evans, S., et al., 2016. Using combined biomolecular methods to explore whale exploitation and social aggregation in hunter-gatherer-fisher society in Tierra Del Fuego. Journal of Archaeological Science: Reports, 6 (Supplement C), 757-767. https://doi.org/10.1016/j.jasrep.2015.10.025
Fiddyment, S., et al. 2015. Animal origin of 13th-century uterine vellum revealed using noninvasive peptide fingerprinting. Proceedings of the National Academy of Sciences of the United States of America, 112 (49), 15066-15071. https://doi.org/10.1073/pnas.1512264112
Frandsen, L.B. 2006. "Ben Og Tak." In C. Feveile (ed): Ribe Studier. Det ældste Ribe. Udgravninger På Nordsiden Af Ribe Å. Højbjerg: Jysk Arkæologisk Selskab, 1984-2000. Bind 1.2.
Hillson, S., 1992. Mammal bones and teeth, institute of archaeology. London: Taylor & Francis Ltd.
Hollemeyer, K., Altmeyer, W., and Heinzle, E. 2007. "Identification of furs of domestic dog, raccoon dog, rabbit and domestic cat by hair analysis using MALDI-ToF mass spectrometry." Spectroscopy Europe. Available from https://www.researchgate.net/profile/Klaus_Hollemeyer/publication/258436423_Identification_of_Furs_of_Domestic_Dog_Raccoon_Dog_Rabbit_and_Domestic_Cat_by_Hair_Analysis_using_MALDI-TOF_Mass_spectrometry/links/004635283793478824000000.pdf
Hollemeyer, K., Altmeyer, W., and Heinzle, E., 2008. Species identification of oetzi's clothing with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry based on peptide pattern similarities of hair. Rapid Communication in Mass spectrometry. Wiley Online Library, 22(18):2751-67. Retrieved from. https://doi.org/10.1002/rcm.3679
Hollemeyer, K., Altmeyer, W., and Heinzle, E., 2002. Identification and quantification of feathers, down, and hair of avian and mammalian origin using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Analytical Chemistry, 74 (23), 5960-5968. https://doi.org/10.1021/ac020347f
Hollemeyer, K., et al., 2012. Matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry combined with multidimensional scaling, binary hierarchical cluster tree and selected diagnostic masses improves species identification of neolithic keratin sequences from furs of the tyrolean iceman Oetzi. Rapid Communications in Mass Spectrometry: RCM, 26 (16), 1735-1745. https://doi.org/10.1002/rcm.6277
Hybel, N. and Poulsen, B., 2007. The Danish resources C. 1000-1550: growth and Recession. Leiden, Boston: Brill. https://doi.org/10.1163/ej.9789004161924.i-448
Jensen, P. M. and Østergaard, S. 2017. Handel med nord og syd. In: M. Runge and J. Hansen eds. Knuds Odense - vikingernes by. Odense Bys Museer. Odense, 177- 179.
Kirby, D.P., et al., 2013. Identification of collagen-based materials in cultural heritage. The Analyst, 138 (17), 4849-4858. https://doi.org/10.1039/c3an00925d
Kistler, L., et al., 2017. A new model for ancient DNA decay based on paleogenomic meta-analysis. Nucleic Acids Research, 45 (11), 6310-6320. Cold Spring Harbor Labs Journals. https://doi.org/10.1093/nar/gkx361
Krings, M., et al., 1997. Neandertal DNA sequences and the origin of modern humans, Cell, 90 (1), 19-30. Elsevier. https://doi.org/10.1016/S0092-8674(00)80310-4
Larsen, J.L., 2005. Kammageren. Takmaterialet Fra Viborg Søndersø. In: M. Iversen, et al., eds. Viborg Søndersø 1018-1030. Arkæologi Og Naturvidenskab I et Værkstedsområde Fra Vikingetid. Højbjerg: Jysk Arkæologisk Selskab.
Lee Lyman, R., 1994. Vertebrate taphonomy. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139878302
Librado, P., et al. 2017. Ancient genomic changes associated with domestication of the horse. Science, 356 (6336), 442- 445. https://doi.org/10.1126/science.aam5298
Liebgott, N.-K., 1985. Elfenben. København: Nationalmuseet.
Linaa, J. 2015. "Crafts in the landscape of the powerless. A combmaker's workshop at Viborg Søndersø AD 1020-1024." In G. Hansen, S. Ashby, I. Baug (eds.). Everyday Products in the Middle Ages: Crafts, Consumption and the Individual in Northern Europe c. AD 800-1600. Oxbow Books, Oxford, 69-90. https://doi.org/10.2307/j.ctvh1dtfs.9
Møhl, U., 1971. Et Knoglemateriale Fra Vikingetid Og Middelalder I Århus. Århus Søndervold. En Byarkæologisk Undersøgelse, In H. H. Andersen, P. J. Crabb, H. J. Madsen, (eds.). København: Gyldendal. 321-329.
O'Sullivan, N.J., et al., 2016. A whole mitochondria analysis of the tyrolean iceman's leather provides insights into the animal sources of copper age clothing, Scientific Reports, 6 (August), 31279. nature.com. https://doi.org/10.1038/srep31279
Orton, D.C., 2012. Taphonomy and interpretation: an analytical framework for social zooarchaeology, International Journal of Osteoarchaeology, 22 (3), 320-337. John Wiley & Sons, Ltd. https://doi.org/10.1002/oa.v22.3
Østergaard, S., 2016. Dyreknoglerne Fra Odense Midtby. OBM 9776, Vilhelm Werners Plads (FHM 96/1392. Rapport over Det Samlede Dyreknoglemateriale. Moesgaard Museum 2016. Unpublished report.
Øye, I. 2005. "Kammer, Kjønn Og Kontekst." UBAS Nordisk 1. Fra Funn Til Samfunn. Jernalderstudier. Available from http://bora.uib.no/bitstream/handle/1956/11376/kammerkjonn-og-kontekst.pdf?sequence=1
Presslee, S., et al. 2018. The identification of archaeological eggshell using peptide markers. STAR: Science & Technology of Archaeological Research, 4 (1), 13-23. Routledge
Richter, K.K., et al., 2011. Fish'n chips: zooMS peptide mass fingerprinting in a 96 well plate format to identify fish bone fragments, Journal of Archaeological Science, 38 (7), 1502-1510. Elsevier. https://doi.org/10.1016/j.jas.2011.02.014
Roesdahl, E., 1999. Dagligliv i Danmarks middelalder: en arkæologisk kulturhistorie. København: Gyldendal.
Schmidt, A.L., et al. 2013. "Identification of animal species in skin clothing from museum collections." In ICOM-CC 16 Th Triennial Conference. http://www.forskningsdatabasen.dk/en/catalog/2265160182.
Shoulders, M.D. and Raines, R.T., 2009. Collagen structure and stability. Annual Review of Biochemistry, 78, 929-958. https://doi.org/10.1146/annurev.biochem.77.032207.120833
Smith, C.I., et al., 2003. The thermal history of human fossils and the likelihood of successful DNA amplification, Journal of Human Evolution, 45 (3), 203-217. Elsevier. https://doi.org/10.1016/S0047-2484(03)00106-4
Solazzo, C. 2017. "Follow-up on the characterization of peptidic markers in hair and fur for the identification of common North American species." Rapid Communications in Mass Spectrometry: RCM. Wiley Online Library. http://onlinelibrary.wiley.com/doi/10.1002/rcm.7923/full. https://doi.org/10.1002/rcm.7923
Solazzo, C., et al., 2017. Molecular markers in keratins from mysticeti whales for species identification of baleen in museum and archaeological collections. PloS One, 12 (8), e0183053. https://doi.org/10.1371/journal.pone.0183053
Solazzo, C., et al., 2013. Characterisation of novel α-keratin peptide markers for species identification in keratinous tissues using mass spectrometry, Rapid Communications in Mass Spectrometry: RCM, 27 (23), 2685-2698. Wiley Online Library. https://doi.org/10.1002/rcm.6730
Solazzo, C., et al., 2014. Species identification by peptide mass fingerprinting (PMF) in fibre products preserved by association with copper-alloy artefacts. Journal of Archaeological Science, 49 (September), 524-535. https://doi.org/10.1016/j.jas.2014.06.009
Steele, T.E., 2015. The contributions of animal bones from archaeological sites: the past and future of zooarchaeology. Journal of Archaeological Science, 56 (April), 168-176. https://doi.org/10.1016/j.jas.2015.02.036
Stewart, J.R.M., et al., 2013. ZooMS: making eggshell visible in the archaeological record. Journal of Archaeological Science, 40 (4), 1797-1804. https://doi.org/10.1016/j.jas.2012.11.007
Strohalm, M., et al., 2008. mMass data miner: an open source alternative for mass spectrometric data analysis, Rapid Communications in Mass Spectrometry: RCM, 22 (6), 905-908. Wiley Online Library. https://doi.org/10.1002/rcm.3444
O'Connor, T., 2000. The archaeology of animal bones. Stroud: Sutton Publishing Limited. O'Connor, T., 2003. The Osteological Evidence. In: Q. Mould, I. Carlisle, and E.A. Cameron, eds. Craft, industry and everyday life: leather and leatherworking in anglo-scandinavian and medieval York. London: Council for British Archaeology.
van Doorn, N.L., Hollund, H., and Collins, M.J., 2011. A novel and non-destructive approach for ZooMS analysis: ammonium bicarbonate buffer extraction, Archaeological and Anthropological Sciences, 3 (3), 281. Springer-Verlag. https://doi.org/10.1007/s12520-011-0067-y
Von Holstein, I.C.C., et al., 2014. Searching for scandinavians in pre-viking Scotland: molecular fingerprinting of early medieval combs, Journal of Archaeological Science, 41, 1-6. Academic Press. https://doi.org/10.1016/j.jas.2013.07.026
Vuissoz, A., et al., 2007. The survival of PCR-amplifiable DNA in cow leather, Journal of Archaeological Science, 34 (5), 823-829. Elsevier. https://doi.org/10.1016/j.jas.2006.09.002
Welker, F. 2017. The Palaeoproteomic Identification of Pleistocene Hominin Skeletal Remains: Towards a Biological Understanding of the Middle to Upper Palaeolithic Transition. PhD Dissertation. Max-Planck- Institute for Evolutionary Anthropology.
Welker, F., et al. 2015a. Ancient proteins resolve the evolutionary history of Darwin's South American Ungulates. Nature, 522 (7554), 81-84. https://doi.org/10.1038/nature14249
Welker, F., et al. 2016. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte Du Renne. Proceedings of the National Academy of Sciences of the United States of America, 113 (40), 11162-11167. https://doi.org/10.1073/pnas.1605834113
Welker, F., et al., 2015b. Using ZooMS to identify fragmentary bone from the late middle/early upper palaeolithic sequence of Les Cottés, France. Journal of Archaeological Science, 54 (Supplement C), 279-286. https://doi.org/10.1016/j.jas.2014.12.010
Westbury, M., et al. 2017. A mitogenomic timetree for Darwin's Enigmatic South American mammal macrauchenia patachonica. Nature Communications, 8 (June), 15951. https://doi.org/10.1038/ncomms15951
Downloads
Published
How to Cite
Issue
Section
License
Counting from volume 11 (2022), articles published in DJA are licensed under Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). The editorial board may accept other Creative Commons licenses for individual articles, if required by funding bodies e.g. the European Research Council. With the publication of volume 11, authors retain copyright to their articles and give DJA the right to the first publication. The authors retain copyright to earlier versions of the articles, such as the submitted and the accepted manuscript.
Articles in volume 1-8 are not licensed under Creative Commons. In these volumes, all rights are reserved to DJA. This implies that readers can download, read, and link to the articles, but they cannot republish the articles. Authors can upload their articles in an institutional repository as a part of a green open access policy.
Articles in volume 9-10 are not licensed under Creative Commons. In these volumes, all rights are reserved to the authors of the articles respectively. This implies that readers can download, read, and link to the articles, but they cannot republish the articles. Authors can upload their articles in an institutional repository.