From AI imaginaries to AI literacy

Artificial intelligence technologies in the everyday lives of migrants in Germany

Authors

  • Laura Sūna University of Siegen
  • Dagmar Hoffmann

DOI:

https://doi.org/10.7146/mk.v40i76.137144

Keywords:

AI imaginaries, folk theories, AI literacy, algorithmic literacy

Abstract

Based on the results of a qualitative study on how migrants experience technologies of automation in everyday life, the article describes users’ imaginaries of artificial intelligence as the overall technology behind different digital media applications. This encompasses the subjective idea of users about what AI technology is, what it can do, and what it should do. All respondents share a general understanding of AI as a feeling and awareness that the technology has its own logic of some kind, as articulated in recommendation algorithms on TikTok, YouTube or Netflix, language correction on WhatsApp or email programs, translation apps, but also in voice assistants like Amazon Alexa or Siri. By analytically linking the two concepts of AI imaginaries and AI literacy, a perspective is developed that focuses on culturally-shaped ideas about technology and the subjectively perceived agency is thus analyzed in the context of the technologies of automation.

References

Bareis, J., & Katzenbach, C. (2021). Talking AI into Being: The Narratives and Imaginaries of National AI Strategies and Their Performative Politics. Science, Technology, & Human Values, 1–27. https://doi.org/10.1177/01622439211030007

Bell, S., & Morse, S. (2013). How people use rich pictures to help them think and act. Systemic Practice and Action Research, 26(4), 331–348. https://doi.org/10.1007/s11213-012-9236-x

Bishop, S. (2019). Managing visibility on YouTube through algorithmic gossip. New Media & Society, 21(11–12), 2589–2606. https://doi.org/10.1177/1461444819854731

Bucher, T. (2017). The algorithmic imaginary: Exploring the ordinary affects of Facebook algorithms. Information, Communication & Society, 20(1), 30–44. https://doi.org/10.1080/1369118X.2016.1154086

Bucher, T. (2018). If...Then. Algorithmic Power and Politics. Oxford University Press.

Büchi, M., Fosch-Villaronga, E., Lutz, C., Tamò-Larrieux, A., & Velidi, S. (2023). Making sense of algorithmic profiling: User perceptions on Facebook. Information, Communication & Society, 26(4), 809–825. https://doi.org/10.1080/1369118X.2021.1989011

Burgess, J., Albury, K., McCosker, A., & Wilken, R. (2022). Everyday data cultures. Polity Press. https://doi.org/10.5210/spir.v2021i0.12088

Bruns, A. (2019). Are filter bubbles real? Polity Press. https://doi.org/10.14763/2019.4.1426

Cotter, K. (2019). Playing the visibility game: How digital influencers and algorithms negotiate influence on Instagram. New Media & Society, 21(4), 895–913. https://doi.org/10.1177/1461444818815684

Cotter, K., & Reisdorf, B., C. (2020). Algorithmic knowledge gaps: A new dimension of (digital) inequality. International Journal of Communication, 14, 745–765.

Das, R. (2023a). Contexts and dimensions of algorithm literacies: Parents’ algorithm literacies amidst the datafication of parenthood. The Communication Review, 1–31. https://doi.org/10.1080/10714421.2023.2247825

Das, R. (2023b). Parents’ understandings of social media algorithms in children’s lives in England: Misunderstandings, parked understandings, transactional understandings and proactive understandings amidst datafication. Journal of Children and Media, 1–17. https://doi.org/10.1080/17482798.2023.2240899

DeVito, M. A. (2021). Adaptive folk theorization as a path to algorithmic literacy on changing platforms. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW2), 1–38. https://doi.org/10.1145/3476080

DeVito, M. A., Gergle, D., & Birnholtz, J. (2017). “Algorithms ruin everything”: #RIPTwitter, folk theories, and resistance to algorithmic change in social media. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, 3163–3174. https://doi.org/10.1145/3025453.3025659

Digitales Deutschland. (2021). Digitales Deutschland. Ein Rahmenkonzept. https://digid.jff.de/wp-content/uploads/2021/06/Rahmenkonzept_DigitalesDeutschland_Vollversion.pdf

Dogruel, L., Facciorusso, D., & Stark, B. (2022). ‘I’m still the master of the machine.’ Internet users’ awareness of algorithmic decision-making and their perception of its effect on their autonomy. Information, Communication & Society, 25(9), 1311–1332. https://doi.org/10.1080/1369118X.2020.1863999

Dogruel, L., Masur, P., & Joeckel, S. (2021). Development and validation of an algorithm literacy scale for internet users. Communication Methods and Measures, 16(2), 115–133. https://doi.org/10.1080/19312458.2021.1968361

Draper, N. A., & Turow, J. (2019). The corporate cultivation of digital resignation. New Media & Society, 21(8), 1824–1839. https://doi.org/10.1177/1461444819833331

Eslami, M., Karahalios, K., Sandvig, C., Vaccaro, K., Rickman, A., Hamilton, K., & Kirlik, A. (2016). First I “like” it, then I hide it: Folk theories of social feeds. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 2371–2382. https://doi.org/10.1145/2858036.2858494

Gil De Zúñiga, H., Goyanes, M., & Durotoye, T. (2024). A Scholarly Definition of Artificial Intelligence (AI): Advancing AI as a Conceptual Framework in Communication Research. Political Communication, 41(2), 317–334. https://doi.org/10.1080/10584609.2023.2290497

Glatt, Z. (2022). Precarity, discrimination and (in)visibility. In E. Costa, P. G. Lange, N. Haynes, & J. Sinanan (Eds.), The Routledge Companion to Media Anthropology (pp. 544–556). Routledge. https://doi.org/10.4324/9781003175605-53

Gruber, J., & Hargittai, E. (2023). The importance of algorithm skills for informed Internet use. Big Data & Society, 10(1), 1–14. https://doi.org/10.1177/20539517231168100

Guzman, A. (2023). Talking about “talking with machines”: Interview as method within hmc. In A. Guzman, R. McEwen, & S. Jones (Eds.), The Sage Handbook of Human–Machine Communication (pp. 243–251). SAGE Publications Ltd. https://doi.org/10.4135/9781529782783

Guzman, A., & Lewis, S. (2020). Artificial intelligence and communication: A Human–Machine Communication research agenda. New Media & Society, 22(1), 70–86. https://doi.org/10.1177/1461444819858691

Hancock, J. T., Naaman, M., & Levy, K. (2020). AI-Mediated Communication: Definition, Research Agenda, and Ethical Considerations. Journal of Computer-Mediated Communication, 25(1), 89–100. https://doi.org/10.1093/jcmc/zmz022

Hargittai, E., Gruber, J., Djukaric, T., Fuchs, J., & Brombach, L. (2020). Black box measures? How to study people’s algorithm skills. Information, Communication & Society, 23(5), 764–775. https://doi.org/10.1080/1369118X.2020.1713846

Hepp, A., Loosen, W., Dreyer, S., Jarke, J., Kannengießer, S., Katzenbach, C., Malaka, R., Pfadenhauer, M. P., Puschmann, C., & Schulz, W. (2023). ChatGPT, LaMDA, and the Hype Around Communicative AI: The Automation of Communication as a Field of Research in Media and Communication Studies. Human-Machine Communication, 6, 41–63. https://doi.org/10.30658/hmc.6.4

Karizat, N., Delmonaco, D., Eslami, M., & Andalibi, N. (2021). Algorithmic Folk theories and identity: How TikTok users co-produce knowledge of identity and engage in algorithmic resistance. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW2), 1–44. https://doi.org/10.1145/3476046

Latré, S. (2018). Social Imaginaries a Conceptual Analysis. In H. Alma & G. Vanheeswijck (Eds.), Social Imaginaries in a Globalizing World (pp. 47–72). De Gruyter. https://doi.org/10.1515/9783110435122-003

Long, D., & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–16. https://doi.org/10.1145/3313831.3376727

Lutz, C. (2019). Digital inequalities in the age of artificial intelligence and big data. Human Behavior and Emerging Technologies, 1(2), 141–148. https://doi.org/10.1002/hbe2.140

Mäkinen, M. (2006). Digital empowerment as a process for enhancing citizens’ participation. E-Learning and Digital Media, 3(3), 381–395. https://doi.org/10.2304/elea.2006.3.3.381

Oeldorf-Hirsch, A., & Neubaum, G. (2023). What do we know about algorithmic literacy? The status quo and a research agenda for a growing field. New Media & Society, 1–21. https://doi.org/10.1177/14614448231182662

Pariser, E. (2011). The Filter Bubble: What the Internet is Hiding from You. Penguin Press. https://doi.org/10.3139/9783446431164

Rader, E., & Gray, R. (2015). Understanding user beliefs about algorithmic curation in the facebook news feed. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, 173–182. https://doi.org/10.1145/2702123.2702174

Schellewald, A. (2022). Theorizing “Stories About Algorithms” as a Mechanism in the Formation and Maintenance of Algorithmic Imaginaries. Social Media + Society, 8(1), 1–10. https://doi.org/10.1177/20563051221077025

Seaver, N. (2017). Algorithms as culture: Some tactics for the ethnography of algorithmic systems. Big Data & Society, 4(2), 205395171773810. https://doi.org/10.1177/2053951717738104

Siles, I., Gómez-Cruz, E., & Ricaurte, P. (2023). Fluid agency in relation to algorithms: Tensions, mediations, and transversalities. Convergence: The International Journal of Research into New Media Technologies, 0(0), 1–16. https://doi.org/10.1177/13548565231174586

Siles, I., Segura-Castillo, A., Solís, R., & Sancho, M. (2020). Folk theories of algorithmic recommendations on Spotify: Enacting data assemblages in the global South. Big Data & Society, 7(1), 1–15. https://doi.org/10.1177/2053951720923377

Statistisches Bundesamt. (2023). Anzahl der Ausländer in Deutschland nach Herkunftsland von 2020 bis 2022 [Graph]. In Statista. https://de.statista.com/statistik/daten/studie/1221/umfrage/anzahl-der-auslaender-in-deutschland-nach-herkunftsland/

Strauss, A. L., & Corbin, J. M. (1990). Basics of Qualitative Research. Grounded Theory Procedures and Techniques. Sage Publications.

Sūna, L. (2023). Migrants’ imaginaries and awareness of discrimination by artificial intelligence: A conceptual framework for analysing digital literacy. In B. Herlo & D. Irrgang (Eds.), Proceedings of the Weizenbaum Conference 2022: Practicing Sovereignty—Interventions for Open Digital Futures (pp. 15–25). Weizenbaum Institute for the Networked Society - The German Internet Institute. https://www.ssoar.info/ssoar/handle/document/86018

Sūna, L., & Hoffmann, D. (2021). Künstliche Intelligenz und KI-bezogene Kompetenzen. Ein Forschungsüberblick. Digitales Deutschland. https://digid.jff.de/auswertung-ki-kompetenzen/

Swart, J. (2021). Experiencing algorithms: How young people understand, feel about, and engage with algorithmic news selection on social media. Social Media + Society, 7(2), 1–11. https://doi.org/10.1177/20563051211008828

Ytre-Arne, B., & Moe, H. (2021). Folk theories of algorithms: Understanding digital irritation. Media, Culture & Society, 43(5), 807–824. https://doi.org/10.1177/0163443720972314

Downloads

Published

2024-08-30

How to Cite

Sūna, L., & Hoffmann, D. (2024). From AI imaginaries to AI literacy: Artificial intelligence technologies in the everyday lives of migrants in Germany. MedieKultur: Journal of Media and Communication Research, 40(76), 53–76. https://doi.org/10.7146/mk.v40i76.137144

Issue

Section

Articles: Theme section