The datafication of Public Service Media
Dreams, Dilemmas and Practical Problems A Case Study of the Implementation of Personalized Recommendations at the Danish Public Service Media ‘DR’
DOI:
https://doi.org/10.7146/mediekultur.v36i69.121180Keywords:
public service media, personalization, algorithmic recommendation, Video on Demand, public service broadcastingAbstract
Historically, public service broadcasting had no quantifiable knowledge about audiences, nor a great interest in knowing them. Today, the competitive logic of the media markets encourage public service media (PSM) organizations to increase datafication. In this paper we examine how a PSM organization interprets the classic public service obligations of creating societal cohesion and diversity in the new world of key performance indicators, business rules and algorithmic parameters.
The paper presents a case study of the implementation of a personalization system for the video on demand service of the Danish PSM ‘DR’. Our empirical findings, based on longitudinal in-depth interviewing, indicate a long and difficult process of datafication of PSM, shaped by both the organizational path dependencies of broadcasting production and the expectations of public service broadcasting.
References
Acar, G., Eubank, C., Englehardt, S., Juarez, M., Narayanan, A., & Diaz, C. (2014). The web never forgets: Persistent tracking mechanisms in the wild. Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security - CCS ’14, 674–689. ACM Press. doi:10.1145/2660267.2660347
Adomavicius, G., & Tuzhilin, A. (2015). Context-aware recommender systems. In C.C. Aggarwal (Ed.), Recommender systems handbook (pp. 191–226). Springer US. http://link.springer.com/10.1007/978-1-4899-7637-6_6
Aggarwal, C.C. (2016a). Content-based recommender systems. In C.C. Aggarwal (Ed.), Recommender systems (pp. 139–166). Springer International Publishing. http://link.springer.com/10.1007/978-3-319-29659-3_4
Aggarwal, C.C. (2016b). Context-sensitive recommender systems. In C.C. Aggarwal (Ed.), Recommender systems (pp. 255–281). Springer International Publishing. http://link.springer.com/10.1007/978-3-319-29659-3_8
Aggarwal, C.C. (2016c). Neighborhood-based collaborative filtering. In C.C. Aggarwal (Ed.), Recommender Systems (pp. 29–70). Springer International Publishing. http://link.springer.com/10.1007/978-3-319-29659-3_2
Álvarez, M.V., López, J.M.T., & Ruíz, M.J.U. (2020). What are you offering? An overview of VODs and recommender systems in European public service media. In Á. Rocha, C. Ferrás, C.E. Montenegro Marin, & V.H. Medina García (Eds.), Information technology and systems (pp. 725–732). Springer International Publishing. https://doi.org/10.1007/978-3-030-40690-5_69
Andersen Business Consulting. (2002). Outlook of the development of technologies and markets for the European audio-visual sector up to 2010. European Commission for Information Society and Media. http://ec.europa.eu/comm/avpolicy/docs/library/ studies/finalised/tvoutlook/tvoutlook_finalrep.pdf
Andersson Schwarz, J. (2016). Public service broadcasting and data-driven personalization: A view from Sweden. Television & New Media, 17(2), 124–141. doi:10.1177/1527476415616193
Ang, I. (1991). Desperately seeking the audience. Routledge.
Bailey, M. (2007). Rethinking public service broadcasting: The historical limits to publicness. In R. Butsch (Ed.), Media and public spheres (pp. 96–108). Palgrave MacMillan. https://doi.org/10.1057/9780230206359_8
Bernstein, A., de Vreese, C., Helberger, N., Schulz, W., Zweig, K., Baden, C., … Zueger, T. (2020). Diversity in news recommendations. ArXiv:2005.09495 [Cs]. http://arxiv.org/abs/2005.09495
Bodó, B. (2019). Selling news to audiences: A qualitative inquiry into the emerging logics of algorithmic news personalization in European quality news media. Digital Journalism, 7(8), 1–22. doi:10.1080/21670811.2019.1624185
Bodó, B., Helberger, N., Eskens, S., & Möller, J. (2019). Interested in diversity: The role of user attitudes, algorithmic feedback loops, and policy in news personalization. Digital Journalism, 7(2), 206–229. doi:10.1080/21670811.2018.1521292
Bolin, G. (2004). The value of being public service: The shifting of power relations in Swedish television production. Media, Culture & Society, 26(2), 277–287. doi:10.1177/0163443704041178
Borgesius, F.J.Z., Trilling, D., Möller, J., Bodó, B., de Vreese, C.H., & Helberger, N. (2016). Should we worry about filter bubbles? Internet Policy Review, 5(1), 16. doi:10.14763/2016.1.401
Bredies, K., Joost, G., & Chow, R. (2007). Designing personalized intelligent user interfaces. Presented at the IASDR 07 Conference. Retrieved from http://www.sd.polyu.edu.hk/iasdr/proceeding/papers/Designing Personalized Intelligent User Interfaces.pdf, https://doi.org/10.1145/1216295.1216305
Brey, P. (2005). Freedom and privacy in ambient intelligence. Ethics and Information Technology, 7(3), 157–166. doi:10.1007/s10676-006-0005-3
Bucher, T. (2018). If ... then: Algorithmic power and politics. Oxford University Press.
Carlson, M. (2006). Tapping into TiVo: Digital video recorders and the transition from schedules to surveillance in television. New Media & Society, 8(1), 97–115. doi:10.1177/1461444806059877
Castells, P., Hurley, N.J., & Vargas, S. (2015). Novelty and diversity in recommender systems. In F. Ricci, L. Rokach, & B. Shapira (Eds.), Recommender systems handbook (pp. 881–918). Springer US. doi:10.1007/978-1-4899-7637-6_26
Chalaby, J.K., & Segell, G. (1999). The broadcasting media in the age of risk: The advent of digital television. New Media & Society, 1(3), 351–368. doi:10.1177/14614449922225627
Citron, D.K., & Pasquale, F. A. (2014). The scored society: Due process for automated predictions. Washington Law Review, 89(1), 1.
Day, G.S. (2011). Closing the marketing capabilities gap. Journal of Marketing, 75, 183–195. doi:10.1509/jmkg.75.4.183
de Gemmis, M., Lops, P., Musto, C., Narducci, F., & Semeraro, G. (2015). Semantics-aware content-based recommender systems. In F. Ricci, L. Rokach, & B. Shapira (Eds.), Recommender systems handbook (pp. 119–159). Springer US. http://link.springer.com/10.1007/978-1-4899-7637-6_4
Diakopoulos, N. (2016). Accountability in algorithmic decision making. Communications of the ACM, 59(2). doi:10.1145/2844110
Donders, K. (2019). Public service media beyond the digital hype: Distribution strategies in a platform era. Media, Culture & Society, 41(7), 1011–1028. doi:10.1177/0163443719857616
European Broadcasting Union. (2007). ESCORT 2007 EBU system of classification of radio and television programmes. http://www.ebu.ch/CMSimages/en/tec_doc_t3322-2007_tcm6-52544.pdf
European Broadcasting Union. (2016). Big Data Initiative workshop: Algorithms and society. Retrieved from https://www.ebu.ch/contents/events/2016/12/big-data-initiative-workshop-algorithms-and-society.
html
European Broadcasting Union. (2017). EBU Big Data Conference 2017. Retrieved from https://www.ebu.ch/events/2017/03/big-data-week
European Broadcasting Union. (2018). Big Data Initiative activity report 2017–2018. European Broadcasting Union. Retrieved from https://www.ebu.ch/publications/ activity-report/login_only/activity-report/big-data-initiative-activity-report-2017-18, https://doi.org/10.15358/1613-0669-2019-2-12
European Broadcasting Union Digital Strategy Group. (2001). Media with a progressive purpose: Conclusions of the EBU Digital Strategy Group, part 2: Managing digital evolution.
European Broadcasting Union Digital Strategy Group. (2002). Media with a purpose—Public service broadcasting in the digital era. The report of the Digital Strategy Group of the European Broadcasting Union. EBU. Retrieved from http://www.ebu.ch/CMS images/en/DSG_final_report_E_tcm6-5090.pdf, https://doi.org/10.4135/9781412952606.n155
Ehn, P. (1988). Work-oriented design of computer artifacts. Arbejdslivscentrum.
Eickhoff, V. (2017). The role of diversity in recommender systems for public broadcasters. Retrieved from https://ebu.io/organizations/blog/58/17/2017/04/27/the-role-of-diversity-in-recommender-systems-forpublic-broadcasters
Erevelles, S., Fukawa, N., & Swayne, L. (2016). Big data consumer analytics and the transformation of marketing. Journal of Business Research, 69(2), 897–904. doi:10.1016/j.jbusres.2015.07.001
EU-DG Competition. (2008). Review of the broadcasting communication summary of the replies to the public consultation. Working paper. State Aid office, DG Competition, European Commission. Retrieved from http://ec.europa.eu/comm/competition/state_aid/reform/comments_broadcasting/summary.pdf, https://doi.org/10.1093/he/9780198725053.003.0021
Fan, H., & Poole, M.S. (2006). What is personalization? Perspectives on the design and implementation of personalization in information systems. Journal of Organizational Computing and Electronic Commerce, 16(3–4), 179–202. doi:10.1080/10919392.2006.9681199
Gillespie, T. (2014). The relevance of algorithms. In T. Gillespie, P. J. Boczkowski, & K. A. Foot (Eds.), Media technologies (pp. 167–194). The MIT Press. doi:10.7551/mitpress/9780262525374.003.0009
Harris, J., & Henderson, A. (1999). A better mythology for system design. Proceedings of the CHI ‘99 Conference on Human Factors in Computing Systems: The CHI is the Limit, Pittsburgh, PA, May 15–20 1999 (pp. 88–95). ACM Press. doi:10.1145/302979.303003
Helberger, N. (2011). Diversity by design. Journal of Information Policy, 1, 441–469.
Helberger, N. (2012). Exposure diversity as a policy goal. Journal of Media Law, 4(1), 65–92. doi:10.5235/175776312802483880
Henten, A., & Tadayoni, R. (2008). The impact of the internet on media technology, platforms and innovation. In L. Küng, R. Picard, & R. Towse (Eds.), Internet and the mass media (pp. 45–64). Sage. https://doi.org/10.4135/9781446216316.n3
Henten, A., & Tadayoni, R. (2015). The dominance of the IT industry in a converging ICT ecosystem. In H. Mitomo, H. Fuke, & E. Bohlin (Eds.), Smart revolution towards the sustainable digital society (pp. 15–34). Edward Elgar Publishing. https://doi.org/10.4337/9781784710040.00008
Henten, A., & Tadayoni, R. (2020). Fading public control of audio-visual media. 22. 14–17 June 2020.
Hutchby, I. (2001). Technologies, texts and affordances. Sociology, 35(2), 441–456. doi:10.1177/s0038038501000219
IAB Europe. (2019). European digital advertising market exceeds €55bn in 2018. Retrieved from https://www.iabeurope.eu/all-news/press-releases/european-digital-advertising-market-exceeds-e55bnin-2018/
Jakubowicz, K. (2006). Keep the essence, change (almost) everything else: Redefining PSB for the 21st century. In I. Banerjee & K. Seneviratne (Eds.), Public service broadcasting in the age of globalization. Asian Media Information and Communication Centre, Nanyang Technological University School of Communication and Information.
Jakubowicz, K. (2007). Public service broadcasting in the 21st century. What chance for a new beginning? In G.F. Lowe & J. Bardoel (Eds.), From public service broadcasting to public service media (pp. 29–49). Nordicom, Göteborg Universitet. https://doi.org/10.1177/02673231090240030502
Johnson, C. (2020). The appisation of television: TV apps, discoverability and the software, device and platform ecologies of the internet era. Critical Studies in Television: The International Journal of Television Studies, 15(2), 165–182. doi:10.1177/1749602020911823
Kaminskas, M., & Bridge, D. (2016). Diversity, serendipity, novelty, and coverage. ACM Transactions on Interactive Intelligent Systems, 7(1), 1–42. doi:10.1145/2926720
Kang, G., Tang, M., Liu, J., Liu, X., & Cao, B. (2016). Diversifying web service recommendation results via exploring service usage history. IEEE Transactions on Services Computing, 9(4), 566–579. doi:10.1109/TSC.2015.2415807
Kulturministeriet. (2000). Bekendtgørelse af lov om radio: Og fjernsynsvirksomhed (Radio-TV-loven).
Kulturministeriet. (2001). Bekendtgørelse af lov om radio: Og fjernsynsvirksomhed.
Kulturministeriet. (2018). DR’s public service-kontrakt for 2019–2023.
Kunaver, M., & Požrl, T. (2017). Diversity in recommender systems: A survey. Knowledge-Based Systems, 123, 154–162. doi:10.1016/j.knosys.2017.02.009
Kvale, S. (2007). Doing interviews. Sage.
Lassen, J.M.M. (2018). DRs tv-virksomhed i forandring: Programflade, portefølje og platforme. Retrieved from https://static-curis.ku.dk/portal/files/209265845/Ph.d._ afhandling_2018_Lassen.pdf
Lassen, J.M. (2020). Multichannel strategy, universalism, and the challenge of audience fragmentation. In M. Medina, P. Savage, & G.F. Lowe (Eds.), Universalism in public service media. Nordicom, Göteborg Universitet.
Leonardi, P.M. (2012). Materiality, sociomateriality, and socio-technical systems: What do these terms mean? How are they different? Do we need them? In P.M. Leonardi, B.A. Nardi, & J. Kallinikos (Eds.), Materiality and organizing (pp. 24–48). Oxford University Press. doi:10.1093/acprof:oso/9780199664054.003.0002
Lerner, A., Simpson, A.K., Kohno, T., & Roesner, F. (2016). Internet Jones and the Raiders of the Lost Trackers: An archaeological study of web tracking from 1996 to 2016. Retrieved from https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lerner
Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7(1), 76–80. doi:10.1109/MIC.2003.1167344
Lindskow, K. (2016). Exploring digital news publishing business models: A production network approach. Frederiksberg.
López-Golán, M. (2019). La innovación de las radiotelevisiones públicas europeas en la comunicación digital y las comunidades de usuarios. 16. https://doi.org/10.7764/cdi.45.1350
Löwgren, J., & Stolterman, E. (2004). Thoughtful interaction design. A design perspective on information technology. The MIT Press. https://doi.org/10.7551/mitpress/6814.001.0001
Lycett, M. (2013). ‘Datafication’: Making sense of (big) data in a complex world. European Journal of Information Systems, 22(4), 381–386. doi:10.1057/ejis.2013.10
Milano, S., Taddeo, M., & Floridi, L. (2019). Ethical aspects of multi-stakeholder recommendation systems. SSRN Electronic Journal. doi:10.2139/ssrn.3493202
Milosavljević, M., & Vobič, I. (2019). Human still in the loop: Editors reconsider the ideals of professional journalism through automation. Digital Journalism, 7(8), 1098–1116. doi:10.1080/21670811.2019.1601576
Mitchell, A. (2005). When it comes to media, power is still in the eye of the beholder. Marketing Week, 28(38), 30–31.
Moe, H. (2008). Discussion forums, games and Second Life: Exploring the value of public broadcasters’ marginal online activities. Convergence, 14(3), 261–276. doi:10.1177/1354856508091080
Möller, J., Trilling, D., Helberger, N., & van Es, B. (2018). Do not blame it on the algorithm: An empirical assessment of multiple recommender systems and their impact on content diversity. Information, Communication & Society, 21(7), 959–977. doi:10.1080/1369118X.2018.1444076
Morgan, D.L. (2008). Snowball sampling. In L.M. Given (Ed.), The SAGE Encyclopedia of Qualitative Research Methods The SAGE encyclopedia of qualitative research methods (pp. 816–817). SAGE Publications, Inc. https://doi.org/10.4135/9781412963909.n425
Murschetz, P.C., & Prandner, D. (2018). ‘Datafying’ broadcasting: Exploring the role of Big data and its implications for competing in a big data-driven TV ecosystem. In D. Khajeheian, M. Friedrichsen, & W. Mödinger (Eds.), Competitiveness in emerging markets (pp. 55–71). Springer International Publishing. doi:10.1007/978-3-319-71722-7_4
Napoli, P. (2011). Exposure diversity reconsidered. Journal of Information Policy, 1, 246. doi:10.5325/jinfopoli.1.2011.0246
Nissen, C.S. (2006). No public service without both public and service: Content provision between the Scylla of populism and the Charybdis of elitism. In C.S. Nissen (Ed.), Making a difference: Public service broadcasting in the European media landscape (pp. 65–82). John Libbey Publishing. https://doi.org/10.1057/9780230349650.0006
Olszewski, B., Macey, D., & Lindstrom, L. (2007). The practical work of : An ethnomethodological inquiry. Human Studies, 29(3), 363–380. doi:10.1007/s10746-006-9029-2
Pariser, E. (2011). The filter bubble: What the internet is hiding from you. ZNet, 304. doi:10.1353/pla.2011.0036
Pellegrini, T. (2017). Semantic metadata in the publishing industry: Technological achievements and economic implications. Electronic Markets, 27(1), 9–20. doi:10.1007/s12525-016-0238-x
Pöchhacker, N., Burkhardt, M., Geipel, A., & Passoth, J.-H. (2017). Interventionen in die Produktion algorithmischer Öffentlichkeiten: Recommender Systeme als Herausforderung für öffentlich-rechtliche Sendeanstalten. Kommunikation@ Gesellschaft, 18, 25.
Pöchhacker, N., Geipel, A., Burkhardt, M., & Passoth, J.-H. (2018). Algorithmische Vorschlagsysteme und der Programmauftrag: Zwischen Datenwissenschaft , journalistischem Anspruch und demokratiepolitischer Aufgabe. In R.M. Kar, B. Thapa, & P. Parycek (Eds.), (Un)Berechenbar? Algorithmen und Automatisierung in Staat und Gesellschaft (pp. 417–439). https://www.ssoar.info/ssoar/handle/document/57616, https://doi.org/10.15460/kommges.2017.18.2.584
Reith, J.C.W. (1924). Broadcast over Britain. Hodder and Stoughton.
Roesner, F., Kohno, T., & Wetherall, D. (2012). Detecting and defending against third-party tracking on the web. Paper presented at the 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2012) (pp. 12–21). USENIX Association.
Rosen, C. (2004). The age of egocasting. The New Atlantis, Fall 2004/Winter 2005, 51–72. doi:http://www.thenewatlantis.com/publications/the-age-of-egocasting
Sandvig, C., Hamilton, K., Karahalios, K., & Langbort, C. (2014). Auditing algorithms: Research methods for detecting discrimination on internet platforms. Paper presented to Data and Discrimination: Converting Critical Concerns into Productive Inquiry, a preconference at the 64th Annual Meeting of the International Communication Association, May 22, 2014, Seattle, WA. Retrieved from http://social.cs.uiuc.edu/ papers/pdfs/ICA2014-Sandvig.pdf
Scannell, P. (2005). The meaning of broadcasting in the digital era. In P. Jauert (Ed.), Cultural dilemmas in public service broadcasting: RIPE@2005 (pp. 129–142). Nordicom.
Schipper, F. (2002). The relevance of Horkheimer’s view of the customer. European Journal of Marketing, 36(1/2), 23–35. doi:10.1108/03090560210412683
Schmidt, J.-H., Sørensen, J.K., Dreyer, S., & Hasebrink, U. (2018). Wie können Empfehlungssysteme zur Vielfalt von Medieninhalten beitragen? Perspektiven für öffentlich-rechtliche Rundfunkanstalten. Media Perspektiven, 11, 522–531.
Schuppan, T. (2009). Reassessing outsourcing in ICT-enabled public management: Examples from the UK. Public Management Review, 11(6), 811–831. doi:10.1080/14719030903318970
Schweizer, C., & Puppis, M. (2018). Public service media in the ‘network’ era: A comparison of remits, funding, and debate in 17 countries. In G. F. Lowe, H.V. den Bulck, & K. Donders (Eds.), Public service media in the networked society RIPE@2017 (pp. 109–124). Nordicom, Göteborg Universitet.
Sommerville, I. (2010). Software engineering. Addison-Wesley. https://doi.org/10.1007/s11616-018-0454-9
Sørensen, J.K. (2011). The paradox of personalisation: Public service broadcasters’ approaches to media personalisation technologies. Retrieved from https://www. researchgate.net/publication/295825824_The_Paradox_of_Personalisation_Public_Service_Broadcasters’_Approaches_to_Media_Personalisation_Technologies, https://doi.org/10.1332/policypress/9781847427601.003.0001
Sørensen, J.K. (2013). PSB goes personal: The failure of personalised PSB web pages. MedieKultur, 29(55), 43–71. Retrieved from http://ojs.statsbiblioteket.dk/index.php/ mediekultur/article/view/7993, https://doi.org/10.7146/mediekultur.v29i55.7993
Sørensen, J.K. (2019). Public service media, diversity and algorithmic recommendation: Tensions between editorial principles and algorithms in European PSM organizations. CEUR Workshop Proceedings of 7th International Workshop on News Recommendation and Analytics (INRA 2019), 2554, 6–11. Retrieved from http://ceur-ws.org/Vol-2554/paper_01.pdf
Sørensen, J.K. (2020). Personalised universalism in the age of algorithms. Universalism in public service media: RIPE@2019 (pp. 191–205). Nordicom. Retrieved from https://www.nordicom.gu.se/sv/publikationer/universalism-public-service-media
Sørensen, J.K., & Hutchinson, J. (2018). Algorithms and public service media. In G.F. Lowe, H.V. den Bulck, & K. Donders (Eds.), Public service media in the networked society RIPE@2017 (pp. 91–106). Nordicom, Göteborg Universitet. Retrieved from http://www.nordicom.gu.se/sites/default/files/publikationer-hela-pdf/public_service_media_in_the_networked_society_ripe_2017.pdf
Sørensen, J.K., & Schmidt, J.-H. (2016). An algorithmic diversity diet? Questioning assumptions behind a diversity recommendation system for PSM.
Sørensen, J.K., & Van den Bulck, H. (2018). Public service media online, advertising and the third-party user data business: A trade versus trust dilemma? Convergence: The International Journal of Research into New Media Technologies, 26(2), 421–447. doi:10.1177/1354856518790203
Sørensen, J.K., Van den Bulck, H., & Kosta, S. (2020). Stop spreading the data: PSM, trust and third-party services. Journal of Information Policy.
Sunstein, C.R. (2001). The daily we: Is the internet really a blessing for democracy? Retrieved from http://bostonreview.net/forum/cass-sunstein-internet-bad-democracy
Sunstein, C.R. (2007). Republic.com 2.0. Princeton University Press.
Syvertsen, T. (2003). Challenges to public television in the era of convergence and commercialization. Television & New Media, 4(2), 155–175. doi:10.1177/1527476402250683
Tadayoni, R., & Skouby, K.E. (1999). Terrestrial digital broadcasting: Convergence and its regulatory implications. Telecommunications Policy, 23(2), 175–199. doi:10.1016/S0308-5961(98)00086-X
Thurman, N., & Schifferes, S. (2012). The future of personalization at news websites. Journalism Studies, 13(5–6), 775–790. doi:10.1080/1461670X.2012.664341
Tidline, T.J. (1999). The mythology of information overload. Library Trends, 47(3), 487–506. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=1848983 &site=ehost-live
Tiedge, J.T., & Ksobiech, K.J. (1986). The ‘lead-in’ strategy for prime-time TV: Does it increase the audience? Journal of Communication, 36(3), 51–63. doi:10.1111/j.1460-2466.1986.tb01437.x
Tintarev, N., & Masthoff, J. (2015). Explaining recommendations: Design and evaluation. In F. Ricci, L. Rokach, & B. Shapira (Eds.), Recommender systems handbook (pp. 353–382). Springer US. doi:10.1007/978-1-4899-7637-6_10
Tkalcic, M., & Chen, L. (2015). Personality and recommender systems. In F. Ricci, L. Rokach, & B. Shapira (Eds.), Recommender systems handbook (pp. 715–739). Springer US. Retrieved from http://link.springer.com/10.1007/978-1-4899-7637-6_21
UNESCO. (2001). Public broadcasting. Why? How? (pp. 1–28). UNESCO. Retrieved from http://unesdoc.unesco.org/images/0012/001240/124058eo.pdf
Van den Bulck, H., & Moe, H. (2018). Public service media, universality and personalisation through algorithms: Mapping strategies and exploring dilemmas. Media, Culture & Society, 40(6), 875–892. doi:10.1177/0163443717734407
Wieringa, M. (2020). What to account for when accounting for algorithms: A systematic literature review on algorithmic accountability. Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (pp. 1–18). ACM. doi:10.1145/3351095.3372833
Zanitti, M., Kosta, S., & Sørensen, J. (2018). A user-centric diversity by design recommender system for the movie application domain. Companion of the Web Conference 2018 WWW ’18 (pp. 1381–1389). ACM Press. doi:10.1145/3184558.3191580
Zarsky, T. (2013). Transparent predictions. University of Illinois Law Review, 2013(4), 1503–1569.
Zhang, F. (2008). Research on recommendation list diversity of recommender systems. 2008 International Conference on Management of E-Commerce and e-Government (pp. 72–76). IEEE. doi:10.1109/ICMECG.2008.32
Zuboff, S. (2019). ‘We make them dance’: Surveillance capitalism, the rise of instrumentarian power, and the threat to human rights. In R.F. Jørgensen & D. Kaye (Eds.), Human rights in the age of platforms (pp. 3–51). MIT Press. https://doi.org/10.7551/mitpress/11304.003.0006
Downloads
Published
How to Cite
Issue
Section
License
Copyright Author and Journal.
Articles published after January 1 2024 are licensed under CCBY 4.0.
Articles published until December 31 2023 are licensed under CCBYNCND.
Articles submitted to MedieKultur should not be submitted to or published in other journals.