SEIZ Matters

Modelling the spread of concepts on Twitter

  • Jonathan Hvithamar Rystrøm Aarhus University
Keywords: Contagion, SEIZ, Twitter, Epidemiology

Abstract

How do different concepts spread on social media? This question is becoming increasingly important as much of our time, discussion, and news consumption move online. This paper investigates the use of two models from epidemiology, namely the classical SI-model and the sociology-inspired SEIZ-model, to model and understand this phenomenon. I study the spread of two concepts during the 2019 Danish national election, klimatosse (climate fool) and Paludan on Twitter, both of which played key roles in the election season and had epidemic qualities in their usage throughout social media.  I find that although both models can provide decent fits of the data, the SEIZ-model outperforms the SI-model by a wide margin. Furthermore, the parameters can be interpreted to provide a deeper understanding of the two phenomena and how they spread.

Author Biography

Jonathan Hvithamar Rystrøm, Aarhus University

Jonathan H. Rystrøm studies cognitive science at Aarhus University. His main areas of interest are behavior on social media, and natural language understanding and processing.

References

Barrett, C. L., Bisset, K. R., Eubank, S. G., Xizhou Feng, & Marathe, M. V. (2008). EpiSimdemics: An efficient algorithm for simulating the spread of infectious disease over large realistic social networks. SC ’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, 1–12. https://doi.org/10.1109/SC.2008.5214892
Bettencourt, L. M. A., Cintrón-Arias, A., Kaiser, D. I., & Castillo-Chávez, C. (2006). The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models. Physica A: Statistical Mechanics and Its Applications, 364, 513–536. https://doi.org/10.1016/j.physa.2005.08.083
Casasanto, D., & Boroditsky, L. (2008). Time in the mind: Using space to think about time. Cognition, 106(2), 579–593. https://doi.org/10.1016/j.cognition.2007.03.004
Casasanto, D., Boroditsky, L., Phillips, W., Greene, J., Goswami, S., Bocanegra-Thiel, S., Santiago-Diaz, I., Fotokopoulu, O., Pita, R., & Gil, D. (2004). How deep are effects of language on thought? Time estimation in speakers of English, Indonesian, Greek, and Spanish. Proceedings of the Annual Meeting of the Cognitive Science Society, 26.
Centola, D. (2010). The spread of behavior in an online social network experiment. Science, 329(5996), 1194–1197.
Centola, D. (2011). An experimental study of homophily in the adoption of health behavior. Science, 334(6060), 1269–1272.
Centola, D., & Macy, M. (2007). Complex contagions and the weakness of long ties. American Journal of Sociology, 113(3), 702–734.
Christoffersen, P. (2019, May 27). Pia Kjærsgaard: Høj stemmeprocent skyldes klimatosser - TV 2. nyheder.tv2.dk. https://nyheder.tv2.dk/2019-05-26-pia-kjaersgaard-hoej-stemmeprocent-skyldes-klimatosser
Chung, C.-F., Agapie, E., Schroeder, J., Mishra, S., Fogarty, J., & Munson, S. A. (2017). When personal tracking becomes social: Examining the use of Instagram for healthy eating. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, 1674–1687.
Clark, H. H. (1996). Using language. Cambridge university press.
Dayhoff, S. A. (1983). Sexist language and person perception: Evaluation of candidates from newspaper articles. Sex Roles, 9(4), 527–539. https://doi.org/10.1007/BF00289792
Derczynski, L., Albert-Lindqvist, T. O., Bendsen, M. V., Inie, N., Pedersen, J. E., & Pedersen, V. D. (2019). Misinformation on Twitter During the Danish National Election: A Case Study. Proceedings of the Conference for Truth and Trust Online.
Fusaroli, R., & Tylén, K. (2016). Investigating Conversational Dynamics: Interactive Alignment, Interpersonal Synergy, and Collective Task Performance. Cognitive Science, 40(1), 145–171. https://doi.org/10.1111/cogs.12251
Garrod, S., & Pickering, M. J. (2009). Joint Action, Interactive Alignment, and Dialog. Topics in Cognitive Science, 1(2), 292–304. https://doi.org/10.1111/j.1756-8765.2009.01020.x
Goldfarb, A., & Tucker, C. (2011). Online Display Advertising: Targeting and Obtrusiveness. Marketing Science, 30(3), 389–404. https://doi.org/10.1287/mksc.1100.0583
Gong, W., Lim, E.-P., & Zhu, F. (2015, April 21). Characterizing Silent Users in Social Media Communities. Ninth International AAAI Conference on Web and Social Media. Ninth International AAAI Conference on Web and Social Media. https://www.aaai.org/ocs/index.php/ICWSM/ICWSM15/paper/view/10462
Gorodnichenko, Y., Pham, T., & Talavera, O. (2018). Social Media, Sentiment and Public Opinions: Evidence from #Brexit and #USElection (Working Paper No. 24631). National Bureau of Economic Research. https://doi.org/10.3386/w24631
Gramsci, A., & Hoare, Q. (1971). Selections from the prison notebooks. Lawrence and Wishart London.
Granovetter, M. S. (1977). The strength of weak ties. In Social networks (pp. 347–367). Elsevier.
Howard, P. N., Duffy, A., Freelon, D., Hussain, M. M., Mari, W., & Maziad, M. (2011). Opening Closed Regimes: What Was the Role of Social Media During the Arab Spring? (SSRN Scholarly Paper ID 2595096). Social Science Research Network. https://papers.ssrn.com/abstract=2595096
Howard, P. N., & Kollanyi, B. (2016). Bots, #Strongerin, and #Brexit: Computational Propaganda During the UK-EU Referendum (SSRN Scholarly Paper ID 2798311). Social Science Research Network. https://papers.ssrn.com/abstract=2798311
Ipsos. (2019, May). Ny undersøgelse: Danskerne og klimaforandringerne. Ipsos. https://www.ipsos.com/da-dk/ny-undersogelse-danskerne-og-klimaforandringerne
Jensen, K. B. (2009). Three-step flow. Journalism, 10(3), 335–337. https://doi.org/10.1177/1464884909102594
Jin, F., Dougherty, E., Saraf, P., Cao, Y., & Ramakrishnan, N. (2013). Epidemiological Modeling of News and Rumors on Twitter. Proceedings of the 7th Workshop on Social Network Mining and Analysis, 8:1–8:9. https://doi.org/10.1145/2501025.2501027
Katz, E. (1957). The Two-Step Flow of Communication: An Up-To-Date Report on an Hypothesis. Public Opinion Quarterly, 21(1), 61–78. https://doi.org/10.1086/266687
Larsen, M. C., & Kofoed, J. (2016). A snap of intimacy: Investigating photo sharing practices on Snapchat and Instagram. AoIR Selected Papers of Internet Research, 6.
Mair, P., & Wilcox, R. (2019). Robust statistical methods in R using the WRS2 package. Behavior Research Methods. https://doi.org/10.3758/s13428-019-01246-w
Majid, A., Bowerman, M., Kita, S., Haun, D. B. M., & Levinson, S. C. (2004). Can language restructure cognition? The case for space. Trends in Cognitive Sciences, 8(3), 108–114. https://doi.org/10.1016/j.tics.2004.01.003
Michel, M., & Smith, B. (2017). Measuring lexical alignment during L2 chat interaction:An eye-tracking study. In S. M. Gass, P. Spinner, & J. Behney (Eds.), Salience in Second Language Acquisition (pp. 244–267). Taylor and Francis. https://doi.org/10.4324/9781315399027
Olof Larsson, A., & Moe, H. (2013). Representation or participation? Twitter use during the 2011 Danish election campaign. Javnost-The Public, 20(1), 71–88.
Parker, I. (1990). Discourse: Definitions and contradictions. Philosophical Psychology, 3(2–3), 187–204. https://doi.org/10.1080/09515089008572998
Pinker, S. (1994). The Language Instinct. How the Mind Creates Language.
R Core Team. (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/
Romero, D. M., Meeder, B., & Kleinberg, J. (2011). Differences in the mechanics of information diffusion across topics: Idioms, political hashtags, and complex contagion on Twitter.
Sapir, E. (1929). The Status of Linguistics as a Science. Language, 5(4), 207. https://doi.org/10.2307/409588
Soetaert, K., & Petzoldt, T. (2010). Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME. Journal of Statistical Software, 33(3). https://doi.org/10.18637/jss.v033.i03
The Chromium Authors, McCandless, M., Sanford, M., & FIRAT, A. (2013). cldr: Language Identifier based on CLD library. https://CRAN.R-project.org/package=cldr
Tomasello, M. (1995). Joint attention as social cognition. Joint Attention: Its Origins and Role in Development, 103130.
Tomasello, M. (2001). First steps toward a usage-based theory of language acquisition. Cognitive Linguistics, 11(1–2). https://doi.org/10.1515/cogl.2001.012
Trecca, F., Bleses, D., Madsen, T. O., & Christiansen, M. H. (2018). Does sound structure affect word learning? An eye-tracking study of Danish learning toddlers. Journal of Experimental Child Psychology, 167, 180–203. https://doi.org/10.1016/j.jecp.2017.10.011
Vestergaard, N. (2019, December 13). Klimatosse er årets ord 2019. DR. https://www.dr.dk/nyheder/indland/klimatosse-er-aarets-ord-2019
Whorf, B. L. (1940). Science and linguistics. Bobbs-Merrill Indianapolis, IN.
Winawer, J., Witthoft, N., Frank, M. C., Wu, L., Wade, A. R., & Boroditsky, L. (2007). Russian blues reveal effects of language on color discrimination. Proceedings of the National Academy of Sciences, 104(19), 7780–7785. https://doi.org/10.1073/pnas.0701644104
Zeller, F., & Hermida, A. (2015). When tradition meets immediacy and interaction. The integration of social media in journalists’ everyday practices. Sur Le Journalisme, About Journalism, Sobre Jornalismo, 4(1), 106–119.
Published
2020-07-03
How to Cite
Rystrøm, J. (2020). SEIZ Matters. Journal of Language Works - Sprogvidenskabeligt Studentertidsskrift, 5(1), 78-91. Retrieved from https://tidsskrift.dk/lwo/article/view/121220