Dynamic Normal Forms and Dynamic Characteristic Polynomial
DOI:
https://doi.org/10.7146/brics.v15i2.21937Resumé
We present the first fully dynamic algorithm for computing the characteristic polynomial of a matrix. In the generic symmetric case our algorithm supports rank-one updates in O(n^2 log n) randomized time and queries in constant time, whereas in the general case the algorithm works in O(n^2 k log n) randomized time, where k is the number of invariant factors of the matrix. The algorithm is based on the first dynamic algorithm for computing normal forms of a matrix such as the Frobenius normal form or the tridiagonal symmetric form. The algorithm can be extended to solve the matrix eigenproblem with relative error 2^{-b} in additional O(n log^2 n log b) time. Furthermore, it can be used to dynamically maintain the singular value decomposition (SVD) of a generic matrix. Together with the algorithm the hardness of the problem is studied. For the symmetric case we present an Omega(n^2) lower bound for rank-one updates and an Omega(n) lower bound for element updates.Downloads
Publiceret
2008-04-12
Citation/Eksport
Frandsen, G. S., & Sankowski, P. (2008). Dynamic Normal Forms and Dynamic Characteristic Polynomial. BRICS Report Series, 15(2). https://doi.org/10.7146/brics.v15i2.21937
Nummer
Sektion
Artikler
Licens
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).